Previous |  Up |  Next

Article

Keywords:
semilattice; prime ideal; filter
Summary:
The $0$-distributive semilattice is characterized in terms of semiideals, ideals and filters. Some sufficient conditions and some necessary conditions for $0$-distributivity are obtained. Counterexamples are given to prove that certain conditions are not necessary and certain conditions are not sufficient.
References:
[1] P. Balasubramani, P. V. Venkatanarasimhan: Characterizations of the $0$-distributive lattice. J. Pure Appl. Math. 32 (2001), 315–324. MR 1826759
[2] G. Grätzer: Lattice Theory First Concepts and Distributive Lattices. W. H. Freeman, San Francisco, 1971. MR 0321817
[3] C. Jayaram: Prime $\alpha $-ideals in a $0$-distributive lattice. J. Pure Appl. Math. 17 (1986), 331–337. MR 0835346 | Zbl 0595.06010
[4] Y. S. Pawar, N. K. Thakare: $0$-distributive semilattices. Canad. Math. Bull. 21 (1978), 469–475. DOI 10.4153/CMB-1978-080-6 | MR 0523589
[5] Y. S. Pawar, N. K. Thakare: Minimal prime ideals in $0$-distributive lattices. Period. Math. Hungar. 13 (1982), 237–246. DOI 10.1007/BF01847920 | MR 0683850
[6] G. Szasz: Introduction to Lattice Theory. Academic Press, New York, 1963. MR 0166118
[7] J. Varlet: A generalization of the notion of pseudocomplementedness. Bull. Soc. Roy. Sci. Liege 37 (1968), 149–158. MR 0228390
[8] J. Varlet: Distributive semilattices and Boolean lattices. Bull. Soc. Roy. Liege 41 (1972), 5–10. MR 0307991 | Zbl 0237.06011
[9] P. V. Venkatanarasimhan: Pseudocomplements in posets. Proc. Amer. Math. Soc. 28 (1971), 9–17. DOI 10.1090/S0002-9939-1971-0272687-X | MR 0272687
[10] P. V. Venkatanarasimhan: Semiideals in semilattices. Col. Math. 30 (1974), 203–212.
Partner of
EuDML logo