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Abstract. We present some results on generalized inverses and their application to gen-
eralizations of the Sherman-Morrison-Woodbury-type formulae.
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1. Introduction

As the final goal, we are interested in extending the well known Sherman-Morrison
formula [6]

(A + uvT )−1 = A−1 − 1
1 + vT A−1u

A−1uvT A−1

(A is a nonsingular matrix, u, v column vectors) to the case that A is singular.

We recall first the notion of quasidirect sum of two matrices ([2], [3]), or, rank-
additivity in the terminology of [5].

If A, B are matrices of the same order, then the sum A + B is quasidirect if for
the ranks,

rank(A + B) = rankA + rankB.

Equivalent statements are:

1. The column space of A + B is the direct sum of the column space of A and the
column space of B; or, similarly, for the row spaces.
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0343.

253



2. There exist nonsingular matrices P and Q such that

PAQ =
(

A0 0
0 0

)
, PBQ =

(
0 0
0 B0

)
,

where the partitionings on the right-hand sides are identical.

We will also be using the notion [1] of the (1, 2)-generalized inverse to an m × n

matrix A, and that of the Moore-Penrose inverse of such a matrix. A (1, 2)-inverse
of A is an n×m matrix X which satisfies

AXA = A,(1)

XAX = X.(2)

Such a matrix X is well known to always exist—even over a general field—and to
have the same rank as A. It is, however, in general not uniquely determined.

The Moore-Penrose inverse A+, usually in the case of the complex field, is the
unique matrix which satisfies, in addition to (1) and (2), the relations

(AA+)∗ = AA+,(3)

(A+A)∗ = A+A.(4)

Here, as usual, the operation X∗ means the conjugate transpose (in the real case,

of course, just the transpose).

In Theorem 2.1, we will add a property to the theory of (1, 2)-inverses which is
formulated analogously to [4]. As usual, we call a square matrix P a projector if it
satisfies P 2 = P , and for completeness, prove a simple lemma.

Lemma 1.1. Let A be anm×nmatrix of rank r, A = RS its rank decomposition,

i.e.R is m× r, S is r × n, where r = rankA. If P is a projector of rank r for which

PA = A, then P = RU for some r ×m matrix U satisfying UR = I .

���������
. If a projector P satisfies PA = A, then, of course, rankP > rankA.

Suppose now that A = RS is a rank decomposition of A. Then for any row vector x

with m coordinates, xP = 0 → xA = 0 → xR = 0. Thus, P = RU for some r ×m

matrix U . Since RURU = RU , it follows that the nonsingular matrix UR satisfies
(UR)3 = (UR)2, i.e.UR = I . �

We also need the following known results:
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Theorem 1.2 ([1], Ch. 5, Theorem 8). Let A be an (in general, complex) m× n

matrix of rank r. Let V be an n× (n− r) matrix of rank n− r for which AV = 0,
let U be an m× (m− r) matrix of rank m− r for which U ∗A = 0. Then the matrix

(5)

(
A U

V ∗ 0

)

is nonsingular and its inverse is

(6)

(
X Y

Z 0

)
,

where X is the Moore-Penrose inverse A+ of A and Y = V (V ∗V )−1, Z =
(U∗U)−1U∗.

In addition, A+U = 0 and V ∗A+ = 0.
��� �"!#��$

1.3. If the annihilating matrices U and V in Theorem 1.2 are “nor-

malized”, i.e. if we replace U by U(U∗U)−
1
2 and V by V (V ∗V )−

1
2 , then Y = V and

Z = U∗.

Theorem 1.4 (Woodbury’s formula [7]). Let A be a nonsingular n × n matrix,

let U , V be n× r matrices of rank r, X a nonsingular r × r matrix.

Then the matrix

A + UXV T

is nonsingular if and only if the r × r matrix

X−1 + V T A−1U

is nonsingular. In that case,

(7) (A + UXV T )−1 = A−1 −A−1U(X−1 + V T A−1U)−1V T A−1.

2. Results

All results in this section—unless specified otherwise—hold for matrices over an
arbitrary field.
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Theorem 2.1. Let A be an m× n matrix. Then:

1. If X is a (1, 2)-inverse of A, then there exist projectors P , Q such that

(8) PA = A, AQ = A,

for which

(9) rank
(

A P

Q X

)
= rankA.

2. If P , Q are projectors satisfying (8), both with the same rank as A, then there

exists a matrixX satisfying (9). This matrix is uniquely determined and satisfies
AX = P , XA = Q.

3. If for projectors P , Q satisfying (8) and for some matrix X (9) holds, then the
matrix X is a (1, 2)-inverse of A.

���������
. To prove 1, choose P = AX , Q = XA. These are indeed projectors

and

rank
(

A P

Q X

)
6 rankA

since, if r is the rank of A,

(
A AX

XA X

) (
X U

−I 0

)
= 0

for U of rankn − r for which AU = 0, and the second matrix has rankm + n − r.

Thus (9) holds.

To prove 2, observe first that by (9) the matrix X is uniquely determined. Indeed,
every entry of X is contained in an (r + 1)× (r + 1) singular matrix which extends
some nonsingular submatrix of A of order r. Now, by Lemma 1.1, if A = RS is a
rank decomposition of A, then P = RU and UR = I , and analogously Q = V S and

SV = I . Choosing X = V U , (9) is then the product

(
R

V

)
(S U),

and thus has rank r.

To prove 3, let (9) be satisfied for projectors P and Q for which (8) holds. Multiply

(
A P

Q X

) (
I 0
−A I

)
=

(
0 P

Q−XA X

)
.
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We have thus for the ranks

r = rank(Q−XA) + rankP.

Since rankP > r, Q = XA. Analogously, premultiplication by
(

I −A

0 I

)

yields P = AX . Further, observe that in the matrix
(

A AX

XA Y

)

with rank equal to rankA the matrix Y is uniquely determined.

Now, (
A AX

XA XAX

)
=

(
I

X

)
A ( I X ) ,

so that X = XAX . Since A = PA, we have A = AXA and X is indeed a (1, 2)-
inverse of A. �
��� �"!#��$

2.2. If in 2 of Theorem 2.1 both projectors P and Q are Hermitian (or,

symmetric in the real case), then X is the Moore-Penrose inverse of A.

Theorem 2.3. Let A be an n × n matrix of rank r < n. Let AP = 0 and
QT A = 0, where P and Q are n × (n − r) matrices of rank n − r. Let X be a

nonsingular (n− r)× (n− r) matrix and let U , V be n× (n− r) matrices such that
both the matrices V T P and QT U are nonsingular.

If α, β are numbers, then the matrix

αA + βUXV T

is nonsingular if and only if αβ 6= 0. In this case,

(10) (αA + βUXV T )−1 = α−1B + β−1P (V T P )−1X−1(QT U)−1QT ,

where B is the (unique) matrix which satisfies one of the following four equivalent

conditions:

AB = I − U(QT U)−1QT , V T B = 0,(11)

BA = I − P (V T P )−1V T , BU = 0,(12) (
A U

V T 0

) (
B P (V T P )−1

(QT U)−1QT 0

)
= I2n−r ,(13)

rank
(

A I − U(QT U)−1QT

I − P (V T P )−1V T B

)
= r.(14)
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In addition, both sums in (10) are quasidirect.
���������

. Observe first that (11) and (13) as well as (12) and (13) are equivalent.

Let us show that also (14) is equivalent to (12). Let first (12) hold. The matrix
(

0 I

U(QT U)−1QT −A

)

has rank2n − r and annihilates the matrix Z on the left-hand side of (14). Conse-
quently, the rank of Z is at most r. Since rankA = r, equality in (14) holds.

Conversely, let (14) hold. Postmultiply Z by

(
I 0
0 U

)
. The resulting matrix

(
A 0

I − P (V T P )−1V T BU

)

has rank at most r, which implies BU = 0. Analogously, premultiplying Z by(
I 0
0 V T

)
yields V T B = 0.

Postmultiply now Z by

(
B I

−I 0

)
. The resulting matrix

(
AB − I + U(QT U)−1QT A

0 I − P (V T P )−1V T

)

has then rank r so that, since I − P (V T P )−1V T is a projector of rank r, (11) holds.
The assertion itself then follows from (12) by performing the multiplication of

αA + βUXV T and α−1B + β−1P (V T P )−1X−1(QT U)−1QT . The rest is obvious.
�

��� �"!#��$
2.4. It is easily checked that B satisfies

ABA = A, BAB = B,

i.e., B is a (1, 2)-inverse of A.

Lemma 2.5. Let A be a nonsingular n×n matrix, let r be a positive integer less

than n. If U , V are n× (n− r) matrices such that V T A−1U is nonsingular, then the

decomposition

A = A0 + U(V T A−1U)−1V T ,

for A0 = A− U(V T A−1U)−1V T , is quasidirect.

In addition, A0(A−1U) = 0, (V T A−1)A0 = 0.
���������

. Immediate since all U , V and U(V T A−1U)−1V T have rankn − r,

whereas A0 has rank at most r. �

258



Theorem 2.6. Let A be a nonsingular n × n matrix, let r be a positive integer

less than n. Let X be a nonsingular r × r matrix, U , V n × (n − r) matrices such
that V T A−1U as well as X + (V T A−1U)−1 are nonsingular. Then A + UXV T is

nonsingular and its inverse is

(15) B + A−1U(V T A−1U)−1(X + (V T A−1U)−1)−1(V T A−1U)−1V T A−1,

where B is the matrix for which

(16)

(
A U

V T 0

) (
B ∗
∗ ∗

)
= I2n−r.

���������
. By Lemma 2.5, A can be written as a quasidirect sum A0 +

U(V T A−1U)−1V T , and A0P = 0, QT A0 = 0, where P = A−1U and QT = V T A−1.

We have thus

(A + UXV T )−1 = (A0 + U(X + (V T A−1U)−1)V T )−1,

so that (15) follows from Theorem 2.3 for α = β = 1 and appropriately chosen
matrices A and X . The fact that in (16) the matrix A can replace A0 follows from
V T B = 0. �

For illustration, let us formulate the case r = 1 as a corollary.

Corollary 2.7. Let A be a nonsingular n× n matrix, let u, v be column vectors

with n coordinates such that vT A−1u 6= 0. If ξ is a number, then A + uξvT is

nonsingular if and only if ξ 6= −(vT A−1u)−1. In that case,

(A + uξvT )−1 = B + (ξ + (vT A−1u)−1)−1(vT A−1u)−2A−1uvT A−1,

where B is the matrix for which

(
A u

vT 0

) (
B ∗
∗ ∗

)
= In+1.

We intend now to combine the results on the generalized inverses with the previous
ones.
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Theorem 2.8. Let A be a real or complex m× n matrix of rank r. Let V be an

n× (n− r) matrix of rank n− r for which AV = 0, let U be an m× (m− r) matrix
of rank m− r for which U∗A = 0. Then the matrix

(17)

(
A + UXV ∗ U

V ∗ 0

)

is nonsingular for every r × r matrix X , and its inverse is

(18)

(
A+ V (V ∗V )−1

(U∗U)−1U∗ X

)
,

where A+ is the Moore-Penrose inverse of A.

���������
. Since

(
A + UXV ∗ U

V ∗ 0

)
=

(
I UX

0 I

) (
A U

V ∗ 0

)
,

the inverse is by Theorem 1.2

(
A+ V (V ∗V )−1

(U∗U)−1U∗ 0

) (
I −UX

0 I

)
,

i.e. (18) since A+U = 0 by Theorem 1.2. �

Theorem 2.9. Let A be a real or complex n × n matrix of rank r < n. Let

AV = 0 and U∗A = 0, where U and V are n × (n − r) matrices of rank n− r. Let

X be a nonsingular (n − r) × (n − r) matrix and let P , Q be n × (n − r) matrices
such that Q∗V = 0 as well as U∗P = 0.
Then the matrix A + PXQ∗ has rank at most r, and exactly r if and only if the

matrix X−1 + Q∗A+P is nonsingular. In this case,

(19) (A + PXQ∗)+ = A+ −A+P (X−1 + Q∗A+P )−1Q∗A+.

���������
. By Remark 1.3, we can suppose without loss of generality that both U

and V are normalized, i.e. that U∗U = I and V ∗V = I . Since U∗(A + PXQ∗) = 0
as well as (A + PXQ∗)V = 0, the rank of A + PXQ∗ is at most r. The matrix

(
A + PXQ∗ U

V ∗ 0

)
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can be written as

(20)

(
A U

V ∗ 0

)
+

(
P

0

)
X(Q∗ 0).

By Woodbury’s formula (7), its inverse exists if and only if

X−1 + (Q∗ 0)
(

A+ V

U∗ 0

) (
P

0

)

is nonsingular, i.e., if and only if X−1 + Q∗A+P is nonsingular. But this occurs if

and only if the rank of A + PXQ∗ is r as follows from Theorem 1.2.
Now, the inverse of (20) can be written in the form

(
A+ V

U∗ 0

)
−

(
A+ V

U∗ 0

) (
P

0

)
(X−1 + Q∗A+P )−1(Q∗ 0)

(
A+ V

U∗ 0

)
.

On the other hand, this matrix is, by Theorem 1.2,
(

(A + PXQ∗)+ V

U∗ 0

)
.

Thus (19) follows by comparison of the upper-left corner matrices. �

3. Concluding remarks

Theorems 2.3, 2.6 and 2.9 present formulae extending in some sense Woodbury’s

formula. It would be desirable to use them in the case that the given matrix A is
nonsingular but very badly conditioned to improve the situation from the (partial)

knowledge of “almost annihilating” vectors.
Observe also that Theorem 2.3 implies the following maybe surprising result:

Theorem 3.1. Let A be an n × n matrix of rank r < n. Let AP = 0 and
QT A = 0, where P and Q are n × (n − r) matrices of rank n − r. Let X be a

nonsingular (n− r)× (n− r) matrix and let U , V be n× (n− r) matrices such that
both the matrices V T P and QT U are nonsingular.

Then the set of triples (x, y, z), xyz 6= 0, which satisfy

det(xA + yUXV T + zI) = 0

coincides with the set of those, again nonzero, triples which satisfy

det(x−1B + y−1P (V T P )−1X−1(OT U)−1QT + z−1I) = 0,

where B is a (1, 2)-inverse of A for which BU = 0 and V T B = 0.
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