Article
Keywords:
$C^*$-algebra; $g$-Drazin inverse; integral representation
Summary:
The paper gives new integral representations of the $g$-Drazin inverse of an element $a$ of a $C^*$-algebra that require no restriction on the spectrum of $a$. The representations involve powers of $a$ and of its adjoint.
References:
[1] N. Castro González, J. J. Koliha:
Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106.
DOI 10.1007/BF01236288 |
MR 1736919
[2] N. Castro González, J. J. Koliha, Yimin Wei:
On integral representation of the Drazin inverse in Banach algebras. Proc. Edinburgh Math. Soc. 45 (2002), 327–331.
MR 1912642
[6] J. J. Koliha:
The Drazin and Moore-Penrose inverse in $C^*$-algebras. Math. Proc. Roy. Irish Acad. 99A (1999), 17–27.
MR 1883060 |
Zbl 0943.46031