Previous |  Up |  Next

Article

Keywords:
$C^*$-algebra; $g$-Drazin inverse; integral representation
Summary:
The paper gives new integral representations of the $g$-Drazin inverse of an element $a$ of a $C^*$-algebra that require no restriction on the spectrum of $a$. The representations involve powers of $a$ and of its adjoint.
References:
[1] N. Castro González, J. J. Koliha: Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106. DOI 10.1007/BF01236288 | MR 1736919
[2] N. Castro González, J. J. Koliha, Yimin Wei: On integral representation of the Drazin inverse in Banach algebras. Proc. Edinburgh Math. Soc. 45 (2002), 327–331. MR 1912642
[3] M. P. Drazin: Pseudo-inverse in associative rings and semigroups. Amer. Math. Monthly 65 (1958), 506–514. DOI 10.2307/2308576 | MR 0098762
[4] J. J. Koliha: A generalized Drazin inverse. Glasgow Math. J. 38 (1996), 367–381. DOI 10.1017/S0017089500031803 | MR 1417366 | Zbl 0897.47002
[5] J. J. Koliha: Isolated spectral points. Proc. Amer. Math. Soc. 124 (1996), 3417–4324. DOI 10.1090/S0002-9939-96-03449-1 | MR 1342031 | Zbl 0864.46028
[6] J. J. Koliha: The Drazin and Moore-Penrose inverse in $C^*$-algebras. Math. Proc. Roy. Irish Acad. 99A (1999), 17–27. MR 1883060 | Zbl 0943.46031
[7] J. J. Koliha, I. Straškraba: Power bounded and exponentially bounded matrices. Appl. Math. 44 (1999), 289–308. DOI 10.1023/A:1023032629988 | MR 1698770
[8] D. Showalter: Representation and computation of the pseudoinverse. Proc. Amer. Math. Soc. 18 (1967), 584–586. DOI 10.1090/S0002-9939-1967-0212594-0 | MR 0212594 | Zbl 0148.38205
Partner of
EuDML logo