Previous |  Up |  Next

Article

Keywords:
perfect rings; Abelian $p$-groups; groups of normalized units; group rings; basic subgroups
Summary:
Let $S(RG)$ be a normed Sylow $p$-subgroup in a group ring $RG$ of an abelian group $G$ with $p$-component $G_p$ and a $p$-basic subgroup $B$ over a commutative unitary ring $R$ with prime characteristic $p$. The first central result is that $1+I(RG; B_p) + I(R(p^i)G; G)$ is basic in $S(RG)$ and $B[1+I(RG; B_p) + I(R(p^i)G; G)]$ is $p$-basic in $V(RG)$, and $[1+I(RG; B_p) + I(R(p^i)G; G)]G_p/G_p$ is basic in $S(RG)/G_p$ and $[1+I(RG; B_p) + I(R(p^i)G; G)]G/G$ is $p$-basic in $V(RG)/G$, provided in both cases $G/G_p$ is $p$-divisible and $R$ is such that its maximal perfect subring $R^{p^i}$ has no nilpotents whenever $i$ is natural. The second major result is that $B(1+I(RG; B_p))$ is $p$-basic in $V(RG)$ and $(1+I(RG; B_p))G/G$ is $p$-basic in $V(RG)/G$, provided $G/G_p$ is $p$-divisible and $R$ is perfect. In particular, under these circumstances, $S(RG)$ and $S(RG)/G_p$ are both starred or algebraically compact groups. The last results offer a new perspective on the long-standing classical conjecture which says that $S(RG)/G_p$ is totally projective. The present facts improve the results concerning this topic due to Nachev (Houston J. Math., 1996) and others obtained by us in (C. R. Acad. Bulg. Sci., 1995) and (Czechoslovak Math. J., 2002).
References:
[1] P. V. Danchev: Topologically pure and basis subgroups in commutative group rings. Compt. Rend. Acad. Bulg. Sci. 48 (1995), 7–10. MR 1405499 | Zbl 0853.16040
[2] P. V. Danchev: Basic subgroups in abelian group rings. Czechoslovak Math. J. 52 (2002), 129–140. DOI 10.1023/A:1021779506416 | MR 1885462 | Zbl 1003.16026
[3] P. V. Danchev: Commutative group algebras of $\sigma $-summable abelian groups. Proc. Amer. Math. Soc. 125 (1997), 2559–2564. DOI 10.1090/S0002-9939-97-04052-5 | MR 1415581 | Zbl 0886.16024
[4] P. V. Danchev: Torsion completeness of Sylow $p$-groups in modular group rings. Acta Math. Hungar. 75 (1997), 317–322. DOI 10.1023/A:1006597605945 | MR 1448707 | Zbl 0927.16031
[5] P. V. Danchev: $C_{\lambda }$-groups and $\lambda $-basic subgroups in modular group rings. Hokkaido Math. J. 30 (2001), 283–296. DOI 10.14492/hokmj/1350911954 | MR 1844820 | Zbl 0989.16019
[6] L. Fuchs: Infinite Abelian Groups, I–II. Mir, Moskva, 1974–1977. MR 0457533
[7] P. Hill, W. Ullery: Almost totally projective groups. Czechoslovak Math. J. 46 (1996), 249–258. MR 1388614
[8] J. Irwin, F. Richman: Direct sums of countable groups and related concepts. J. Algebra 2 (1965), 443–450. DOI 10.1016/0021-8693(65)90005-0 | MR 0191955
[9] G. Karpilovsky: Unit Groups of Group Rings. North-Holland, Amsterdam, 1989. MR 1042757 | Zbl 0687.16010
[10] S. Khabbaz: Abelian torsion groups having a minimal system of generators. Trans. Amer. Math. Soc. 98 (1961), 527–538. DOI 10.1090/S0002-9947-1961-0125877-9 | MR 0125877 | Zbl 0094.24603
[11] W. May: Commutative group algebras. Trans. Amer. Math. Soc. 136 (1969), 139–149. DOI 10.1090/S0002-9947-1969-0233903-9 | MR 0233903 | Zbl 0182.04401
[12] W. May: Modular group algebras of simply presented abelian groups. Proc. Amer. Math. Soc. 104 (1988), 403–409. DOI 10.1090/S0002-9939-1988-0962805-2 | MR 0962805 | Zbl 0691.20008
[13] W. May: The direct factor problem for modular abelian group algebras. Contemp. Math. 93 (1989), 303–308. DOI 10.1090/conm/093/1003359 | MR 1003359 | Zbl 0676.16010
[14] N. Nachev: Torsion completeness of the group of normalized units in modular group rings. Compt. Rend. Acad. Bulg. Sci. 47 (1994), 9–11. MR 1332596 | Zbl 0823.16022
[15] N. Nachev: Invariants of the Sylow $p$-subgroup of the unit group of commutative group ring of characteristic $p$. Compt. Rend. Acad. Bulg. Sci. 47 (1994), 9–12. MR 1319683
[16] N. Nachev: Invariants of the Sylow $p$-subgroup of the unit group of a commutative group ring of characteristic $p$. Commun. Algebra 23 (1995), 2469–2489. DOI 10.1080/00927879508825355 | MR 1330795 | Zbl 0828.16037
[17] N. Nachev: Basic subgroups of the group of normalized units in modular group rings. Houston J. Math. 22 (1996), 225–232. MR 1402745
Partner of
EuDML logo