Previous |  Up |  Next

Article

Keywords:
almost periodic function; Fourier coefficient; Fourier exponent; spectrum of almost periodic function; almost periodic system of differential equations; formal almost periodic solution; distance of two spectra; time lag
Summary:
This paper is a continuation of my previous paper in Mathematica Bohemica and solves the same problem but by means of another method. It deals with almost periodic solutions of a certain type of almost periodic systems of differential equations.
References:
[1] Amerio, L., Prouse, G.: Almost Periodic Functions and Functional Equations. N. Y. Nostrand Reinhold Company, 1971. MR 0275061
[2] Bochner, S.: Lectures on Fourier Integrals. Princeton University Press, 1959. MR 0107124 | Zbl 0085.31802
[3] Coppel, W. A.: Almost periodic properties of ordinary differential equations. Ann. Mat. Pura Appl., IV. Ser. 76 (1967), 27–49. DOI 10.1007/BF02412227 | MR 0221024 | Zbl 0153.12301
[4] Fink, A. M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, Springer, New York, 1978. MR 0460799
[5] Fischer, A.: Existence of almost periodic solution of systems of linear and quasilinear differential equations with time lag. Čas. Pěst. Mat. 106 (1981), 256–268. MR 0629724
[6] Fischer, A.: Almost periodic solutions with a prescribed spectrum of systems of linear and quasilinear differential equations with almost periodic coefficients and constant time lag (Cauchy integral). Math. Bohem. 124 (1999), 351–379. MR 1722873 | Zbl 0936.42003
[7] Levitan, B. M.: Almost Periodic Functions. GIZTL, Moskva, 1953. (Russian) MR 0060629
[8] Levitan, B. M., Žikov, V. V.: Almost Periodic Functions and Differential Equations. IMU, Moskva, 1978. (Russian) MR 0509035
Partner of
EuDML logo