Article
Keywords:
group algebras; isomorphisms; $p$-mixed splitting groups; rings with zero characteristic
Summary:
Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop {\text{inv}}(R) \cup \mathop {\text{zd}}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).
References:
[1] D. Beers, F. Richman, E. A. Walker:
Group algebras of abelian groups. Rend. Sem. Mat. Univ. Padova 69 (1983), 41–50.
MR 0716984
[2] P. V. Danchev:
Isomorphic semisimple group algebras. C. R. Acad. Bulg. Sci. 53 (2000), 13–14.
MR 1779521 |
Zbl 0964.20001
[3] P. V. Danchev:
A new simple proof of the W. May’s claim: $FG$ determines $G/G_0$. Riv. Mat. Univ. Parma 1 (2002), 69–71.
MR 1951976 |
Zbl 1019.20002
[4] P. V. Danchev:
A note on isomorphic commutative group algebras over certain rings. An. St. Univ. Ovidius Constanta 13 (2005), 69–74.
MR 2230861 |
Zbl 1113.20005
[13] W. D. Ullery:
A note on group algebras of $p$-primary abelian groups. Comment. Math. Univ. Carol. 36 (1995), 11–14.
MR 1334408 |
Zbl 0828.20005