Previous |  Up |  Next

Article

Keywords:
hereditary torsion theory; torsion theory of finite type; Goldie’s torsion theory; non-singular module; non-singular ring; monoid ring; precover class; cover class
Summary:
Let $G$ be a multiplicative monoid. If $RG$ is a non-singular ring such that the class of all non-singular $RG$-modules is a cover class, then the class of all non-singular $R$-modules is a cover class. These two conditions are equivalent whenever $G$ is a well-ordered cancellative monoid such that for all elements $g,h\in G$ with $g < h$ there is $l\in G$ such that $lg = h$. For a totally ordered cancellative monoid the equalities $Z(RG) = Z(R)G$ and $\sigma (RG) = \sigma (R)G$ hold, $\sigma $ being Goldie’s torsion theory.
References:
[1] F. W. Anderson, K. R. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, Springer, 1974. MR 0417223
[2] L. Bican: Torsionfree precovers. Proceedings of the Klagenfurt Conference 2003 (66. AAA), Verlag Johannes Heyn, Klagenfurt, 2004, pp. 1–6. MR 2080845 | Zbl 1074.16002
[3] L. Bican: Precovers and Goldie’s torsion theory. Math. Bohem. 128 (2003), 395–400. MR 2032476 | Zbl 1057.16027
[4] L. Bican: On torsionfree classes which are not precover classes. (to appear). MR 2411109 | Zbl 1166.16013
[5] L. Bican: Non-singular precovers over polynomial rings. (to appear). MR 2281000 | Zbl 1106.16032
[6] L. Bican, R. El Bashir, E. Enochs: All modules have flat covers. Proc. London Math. Society 33 (2001), 649–652. MR 1832549
[7] L. Bican, B. Torrecillas: Precovers. Czechoslovak Math. J. 53 (2003), 191–203. MR 1962008
[8] L. Bican, B. Torrecillas: On covers. J. Algebra 236 (2001), 645–650. DOI 10.1006/jabr.2000.8562 | MR 1813494
[9] L. Bican, T. Kepka, P. Němec: Rings, Modules, and Preradicals. Marcel Dekker, New York, 1982. MR 0655412
[10] J. Golan: Torsion Theories. Pitman Monographs and Surveys in Pure and Applied Matematics, 29, Longman Scientific and Technical, 1986. MR 0880019 | Zbl 0657.16017
[11] S. H. Rim, M. L. Teply: On coverings of modules. Tsukuba J. Math. 24 (2000), 15–20. DOI 10.21099/tkbjm/1496164042 | MR 1791327
[12] M. L. Teply: Torsion-free covers II. Israel J. Math. 23 (1976), 132–136. MR 0417245 | Zbl 0321.16014
[13] M. L. Teply: Some aspects of Goldie’s torsion theory. Pacif. J. Math. 29 (1969), 447–459. DOI 10.2140/pjm.1969.29.447 | MR 0244323 | Zbl 0174.06803
[14] J. Xu: Flat Covers of Modules. Lecture Notes in Mathematics 1634, Springer, Berlin, 1996. MR 1438789 | Zbl 0860.16002
Partner of
EuDML logo