Previous |  Up |  Next

Article

Keywords:
extreme points; polyconvexity; quasiconvexity; rank-1 convexity; lower semicontinuous function
Summary:
We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in $\mathbb{R}^{m\times n}$, $\min (m,n)\le 2$, then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope.
References:
[1] E. Acerbi, N. Fusco: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1986), 125–145. MR 0751305
[2] E. M. Alfsen: Compact Convex Sets and Boundary Integrals. Springer, Berlin, 1971. MR 0445271 | Zbl 0209.42601
[3] J. M. Ball: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63 (1977), 337–403. MR 0475169 | Zbl 0368.73040
[4] J. M. Ball: A version of the fundamental theorem for Young measures. PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre, M. Slemrod (eds.), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207–215. MR 1036070 | Zbl 0991.49500
[5] K. Bhattacharya, N. B. Firoozye, R. D. James, R. V. Kohn: Restriction on microstructure. Proc. Roy. Soc. Edinburgh 124A (1994), 843–878. MR 1303758
[6] B. Dacorogna: Direct Methods in the Calculus of Variations. Springer, Berlin, 1989. MR 0990890 | Zbl 0703.49001
[7] G. Dolzmann, B. Kirchheim, J. Kristensen: Conditions for equality of hulls in the calculus of variations. Arch. Rat. Mech. Anal. 154 (2000), 93–100. DOI 10.1007/s002050000098 | MR 1784961
[8] D. Kinderlehrer, P. Pedregal: Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991), 329–365. DOI 10.1007/BF00375279 | MR 1120852
[9] D. Kinderlehrer, P. Pedregal: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90. DOI 10.1007/BF02921593 | MR 1274138
[10] M. Kružík: Bauer’s maximum principle and hulls of sets. Calc. Var. Partial Differential Equations 11 (2000), 321–332. DOI 10.1007/s005260000047 | MR 1797873
[11] M. Kružík: Quasiconvex extreme points of convex sets. (to appear). MR 1937535
[12] J. Matoušek, P. Plecháč: On functional separately convex hulls. Discrete Comput. Geom. 19 (1998), 105–130. DOI 10.1007/PL00009331 | MR 1486640
[13] C. B. Morrey, Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25–53. DOI 10.2140/pjm.1952.2.25 | MR 0054865 | Zbl 0046.10803
[14] C. B. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966. Zbl 0142.38701
[15] S. Müller: Variational Models for Microstructure and Phase Transitions. Lecture Notes of the Max-Planck-Institute No. 2, Leipzig, 1998. MR 1731640
[16] P. Pedregal: Laminates and microstructure. Europ. J. Appl. Math. 4 (1993), 121–149. MR 1228114 | Zbl 0779.73050
[17] P. Pedregal: Parametrized Measures and Variational Principles. Birhäuser, Basel, 1997. MR 1452107 | Zbl 0879.49017
[18] V. Šverák: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh 120 (1992), 185–189. MR 1149994
[19] K. Zhang: On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré, Ann. Non Linéaire 15 (1998), 663–686. DOI 10.1016/S0294-1449(99)80001-8 | MR 1650974 | Zbl 0917.49014
[20] K. Zhang: On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differential Equations 6 (1998), 143–160. DOI 10.1007/s005260050086 | MR 1606473 | Zbl 0896.49005
[21] K. Zhang: On some semiconvex envelopes. NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 37–44. DOI 10.1007/s00030-002-8117-x | MR 1891694 | Zbl 1012.49012
Partner of
EuDML logo