[1] E. Acerbi, N. Fusco:
Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1986), 125–145.
MR 0751305
[3] J. M. Ball:
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63 (1977), 337–403.
MR 0475169 |
Zbl 0368.73040
[4] J. M. Ball:
A version of the fundamental theorem for Young measures. PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre, M. Slemrod (eds.), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207–215.
MR 1036070 |
Zbl 0991.49500
[5] K. Bhattacharya, N. B. Firoozye, R. D. James, R. V. Kohn:
Restriction on microstructure. Proc. Roy. Soc. Edinburgh 124A (1994), 843–878.
MR 1303758
[7] G. Dolzmann, B. Kirchheim, J. Kristensen:
Conditions for equality of hulls in the calculus of variations. Arch. Rat. Mech. Anal. 154 (2000), 93–100.
DOI 10.1007/s002050000098 |
MR 1784961
[8] D. Kinderlehrer, P. Pedregal:
Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991), 329–365.
DOI 10.1007/BF00375279 |
MR 1120852
[9] D. Kinderlehrer, P. Pedregal:
Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90.
DOI 10.1007/BF02921593 |
MR 1274138
[11] M. Kružík:
Quasiconvex extreme points of convex sets. (to appear).
MR 1937535
[14] C. B. Morrey, Jr.:
Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966.
Zbl 0142.38701
[15] S. Müller:
Variational Models for Microstructure and Phase Transitions. Lecture Notes of the Max-Planck-Institute No. 2, Leipzig, 1998.
MR 1731640
[18] V. Šverák:
Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh 120 (1992), 185–189.
MR 1149994