[1] P. Billingsley:
Probability and Measure. Third edition. John Wiley, Chichester, 1995.
MR 1324786
[7] B. R. Gelbaum:
Modern Real and Complex Analysis. John Wiley, New York, 1995.
MR 1325692
[8] G. H. Hardy:
Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17 (1916), 301–325.
MR 1501044
[9] P. Humke, G. Petruska:
The packing dimension of a typical continuous function is 2. Real Anal. Exch. 14 (1988–89), 345–358.
MR 0995975
[11] S. V. Levizov:
On the central limit theorem for series with respect to periodical multiplicative systems I. Acta Sci. Math. (Szeged) 55 (1991), 333–359.
MR 1152596 |
Zbl 0759.42018
[12] S. V. Levizov:
Weakly lacunary trigonometric series. Izv. Vyssh. Uchebn. Zaved. Mat. (1988), 28–35, 86–87.
MR 0938430 |
Zbl 0713.42011
[13] N. N. Luzin: Sur les propriétés des fonctions mesurables. C. R. Acad. Sci. Paris 154 (1912), 1688–1690.
[14] P. Mattila:
Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995.
MR 1333890 |
Zbl 0819.28004
[15] P. Mattila:
Tangent measures, densities, and singular integrals. Fractal geometry and stochastics (Finsterbergen, 1994), 43–52, Progr. Probab. 37, Birkhäuser, Basel, 1995.
MR 1391970 |
Zbl 0837.28006
[17] D. Preiss:
Geometry of measures in $\mathbb{R}^{n}$: distribution, rectifiability, and densities. Ann. Math., II. Ser. 125 (1987), 537–643.
DOI 10.2307/1971410 |
MR 0890162
[18] D. Preiss, L. Zajíček:
On Dini and approximate Dini derivates of typical continuous functions. Real Anal. Exch. 26 (2000/01), 401–412.
MR 1825518
[19] S. Saks:
Theory of the Integral. Second Revised (ed.), Dover, New York, 1964.
MR 0167578