Previous |  Up |  Next

Article

Keywords:
semigroup of full transformations; permutation; centralizer; regular; inverse; completely regular semigroups
Summary:
For an arbitrary permutation $\sigma $ in the semigroup $T_n$ of full transformations on a set with $n$ elements, the regular elements of the centralizer $C(\sigma )$ of $\sigma $ in $T_n$ are characterized and criteria are given for $C(\sigma )$ to be a regular semigroup, an inverse semigroup, and a completely regular semigroup.
References:
[1] Higgins, P. M.: Digraphs and the semigroup of all functions on a finite set. Glasgow Math. J. 30 (1988), 41–57. DOI 10.1017/S0017089500007011 | MR 0925558 | Zbl 0634.20034
[2] Howie, J. M.: Fundamentals of Semigroup Theory. Oxford University Press, New York, 1995. MR 1455373 | Zbl 0835.20077
[3] Konieczny, J.: Green’s relations and regularity in centralizers of permutations. Glasgow Math. J. 41 (1999), 45–57. DOI 10.1017/S0017089599970301 | MR 1689659 | Zbl 0924.20049
[4] Konieczny, J.: Semigroups of transformations commuting with idempotents. Algebra Colloq. 9 (2002), 121–134. MR 1901268 | Zbl 1005.20046
[5] Konieczny, J., Lipscomb, S.: Centralizers in the semigroup of partial transformations. Math. Japon. 48 (1998), 367–376. MR 1664246
[6] Liskovec, V. A., Feĭnberg, V. Z.: On the permutability of mappings. Dokl. Akad. Nauk BSSR 7 (1963), 366–369. (Russian) MR 0153609
[7] Liskovec, V. A., Feĭnberg, V. Z.: The order of the centralizer of a transformation. Dokl. Akad. Nauk BSSR 12 (1968), 596–598. (Russian) MR 0237624
[8] Weaver, M. W.: On the commutativity of a correspondence and a permutation. Pacific J. Math. 10 (1960), 705–711. DOI 10.2140/pjm.1960.10.705 | MR 0115923 | Zbl 0094.03203
Partner of
EuDML logo