[1] Banakh T.:
$AE(0)$--spaces and regular operators extending $($averaging$)$ pseudometrics. Bull. Polish Acad. Sci. Math. 42 (1994), 3 197--206.
MR 1811849 |
Zbl 0827.54010
[2] Banakh T., Bessaga C.:
On linear operators extending $[$pseudo$]$metrics. Bull. Polish Acad. Sci. Math. 48 (2000), 1 35--49.
MR 1751152 |
Zbl 0948.54021
[3] Banakh T., Brodskiy N., Stasyuk I., Tymchatyn E.D.:
On continuous extension of uniformly continuous functions and metrics. submitted to Colloq. Math.
MR 2520139
[4] Banakh T., Tymchatyn E.D., Zarichnyi M.: Extensions of metrics: survey of results. in preparation.
[5] Bessaga C.:
On linear operators and functors extending pseudometrics. Fund. Math. 142 (1993), 2 101--122.
MR 1211761 |
Zbl 0847.54033
[6] Čoban M.M.:
Multivalued mappings and Borel sets. Dokl. Akad. Nauk SSSR 182 (1968), 1175--1178.
MR 0236892
[10] Khrennikov A.Yu., Nilsson M.:
$p$-Adic Deterministic and Random Dynamics. Kluwer Academic, Dordrecht-Boston-London, 2004, 270 pp.
MR 2105195
[12] Luukkainen J., Movahedi-Lankarani H.:
Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math. 144 (1994), 181--193.
MR 1273695 |
Zbl 0807.54025
[13] van Mill J., Pelant J., Pol R.:
Selections that characterize topological completeness. Fund. Math. 149 (1996), 127--141.
MR 1376668 |
Zbl 0861.54016
[14] Stasyuk I.:
Operators of simultaneous extensions partial ultrametrics. Math. Methods and Phys.-Mech. Fields 49 (2006), 2 27--32 (Ukrainian).
MR 2259425
[15] Stasyuk I., Tymchatyn E.D.: A note on uniformly continuous selections of multivalued maps. submitted to Topology Appl.
[17] Tymchatyn E.D., Zarichnyi M.:
A note on operators extending partial ultrametrics. Comment. Math. Univ. Carolin. 46 (2005), 3 515--524.
MR 2174529 |
Zbl 1121.54045