Previous |  Up |  Next

Article

Keywords:
ultrametric; space of partial ultrametrics; continuous extension operator
Summary:
The problem of continuous simultaneous extension of all continuous partial ultrametrics defined on closed subsets of a compact zero-dimensional metric space was recently solved by E.D. Tymchatyn and M. Zarichnyi and improvements to their result were made by I. Stasyuk. In the current paper we extend these results to complete, bounded, zero-dimensional metric spaces and to both continuous and uniformly continuous partial ultrametrics.
References:
[1] Banakh T.: $AE(0)$--spaces and regular operators extending $($averaging$)$ pseudometrics. Bull. Polish Acad. Sci. Math. 42 (1994), 3 197--206. MR 1811849 | Zbl 0827.54010
[2] Banakh T., Bessaga C.: On linear operators extending $[$pseudo$]$metrics. Bull. Polish Acad. Sci. Math. 48 (2000), 1 35--49. MR 1751152 | Zbl 0948.54021
[3] Banakh T., Brodskiy N., Stasyuk I., Tymchatyn E.D.: On continuous extension of uniformly continuous functions and metrics. submitted to Colloq. Math. MR 2520139
[4] Banakh T., Tymchatyn E.D., Zarichnyi M.: Extensions of metrics: survey of results. in preparation.
[5] Bessaga C.: On linear operators and functors extending pseudometrics. Fund. Math. 142 (1993), 2 101--122. MR 1211761 | Zbl 0847.54033
[6] Čoban M.M.: Multivalued mappings and Borel sets. Dokl. Akad. Nauk SSSR 182 (1968), 1175--1178. MR 0236892
[7] Engelking R., Heath R., Michael E.: Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150--158. DOI 10.1007/BF01425452 | MR 0244959 | Zbl 0167.20504
[8] de Groot J.: Non-archimedean metrics in topology. Proc. Amer. Math. Soc. 7 (1956), 948--953. DOI 10.1090/S0002-9939-1956-0080905-8 | MR 0080905 | Zbl 0072.40201
[9] Dugundji J.: An extension of Tietze's theorem. Pacific J. Math. 1 (1951), 353--367. DOI 10.2140/pjm.1951.1.353 | MR 0044116 | Zbl 0043.38105
[10] Khrennikov A.Yu., Nilsson M.: $p$-Adic Deterministic and Random Dynamics. Kluwer Academic, Dordrecht-Boston-London, 2004, 270 pp. MR 2105195
[11] Künzi H.P., Shapiro L.: On simultaneous extension of continuous partial functions. Proc. Amer. Math. Soc. 125 (1997), 1853--1859. DOI 10.1090/S0002-9939-97-04011-2 | MR 1415348
[12] Luukkainen J., Movahedi-Lankarani H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fund. Math. 144 (1994), 181--193. MR 1273695 | Zbl 0807.54025
[13] van Mill J., Pelant J., Pol R.: Selections that characterize topological completeness. Fund. Math. 149 (1996), 127--141. MR 1376668 | Zbl 0861.54016
[14] Stasyuk I.: Operators of simultaneous extensions partial ultrametrics. Math. Methods and Phys.-Mech. Fields 49 (2006), 2 27--32 (Ukrainian). MR 2259425
[15] Stasyuk I., Tymchatyn E.D.: A note on uniformly continuous selections of multivalued maps. submitted to Topology Appl.
[16] Tymchatyn E.D., Zarichnyi M.: On simultaneous linear extensions of partial $($pseudo$)$metrics. Proc. Amer. Math. Soc. 132 (2004), 2799--2807. DOI 10.1090/S0002-9939-04-07413-1 | MR 2054807 | Zbl 1050.54011
[17] Tymchatyn E.D., Zarichnyi M.: A note on operators extending partial ultrametrics. Comment. Math. Univ. Carolin. 46 (2005), 3 515--524. MR 2174529 | Zbl 1121.54045
Partner of
EuDML logo