Article
Keywords:
Stone-Čech compactification; right cancellable ultrafilters; left invariant topologies
Summary:
For every discrete group $G$, the Stone-Čech compactification $\beta G$ of $G$ has a natural structure of a compact right topological semigroup. An ultrafilter $p\in G^*$, where $G^*=\beta G\setminus G$, is called right cancellable if, given any $q,r\in G^*$, $qp=rp$ implies $q=r$. For every right cancellable ultrafilter $p\in G^*$, we denote by $G(p)$ the group $G$ endowed with the strongest left invariant topology in which $p$ converges to the identity of $G$. For any countable group $G$ and any right cancellable ultrafilters $p,q\in G^*$, we show that $G(p)$ is homeomorphic to $G(q)$ if and only if $p$ and $q$ are of the same type.
References:
[1] Hindman N., Strauss D.:
Algebra in the Stone-Čech Compactification: Theory and Applications. Walter de Gruyter, Berlin, 1998.
MR 1642231 |
Zbl 0918.22001
[2] Hindman N., Protasov I., Strauss D.:
Topologies on $S$ determined by idempotents in $\beta S$. Topology Proc. 23 (1998), 155--190.
MR 1803247 |
Zbl 0970.54036
[5] Protasov I.V.:
Remarks on extremally disconnected semitopological groups. Comment. Math. Univ. Carolin. 43 (2002), 343--347.
MR 1922132 |
Zbl 1090.54033
[6] Vaughan J.E.:
Two spaces homeomorphic to $Seq(p)$. Comment. Math. Univ. Carolin. 42 (2001), 209--218.
MR 1825385 |
Zbl 1053.54033