Previous |  Up |  Next

Article

Keywords:
$\pi$-metrizable; weakly $\pi$-metrizable; $\pi$-base; $\sigma$-discrete $\pi$-base; $\sigma$-disjoint $\pi$-base; $d$-separable
Summary:
A space $X$ is said to be $\pi$-metrizable if it has a $\sigma$-discrete $\pi$-base. The behavior of $\pi$-metrizable spaces under certain types of mappings is studied. In particular we characterize strongly $d$-separable spaces as those which are the image of a $\pi$-metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a $\pi$-metrizable space under an open continuous mapping. A question posed by Arhangel'skii regarding if a $\pi$-metrizable topological group must be metrizable receives a negative answer.
References:
[1] Arhangel'skii A.V.: Topological invariants in algebraic environment. Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, pp. 1--57. MR 1969992 | Zbl 1030.54026
[2] Arhangel'skii A.V.: $d$-separable spaces. Seminar on General Topology, Moscow, 1981, pp. 3--8. MR 0656944
[3] Davis S.: Topology. McGraw-Hill, New York, 2004. Zbl 1142.20020
[4] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Fearnley D.: A Moore space with a $\sigma$-discrete $\pi$-base which cannot be densely embedded in any Moore space with the Baire property. Proc. Amer. Math. Soc. 127 (1999), 3095--3100. DOI 10.1090/S0002-9939-99-04876-5 | MR 1605960 | Zbl 0992.54026
[6] Isbell J.: Uniform Spaces. American Mathematical Society, Providence, Rhode Island, 1964. MR 0170323 | Zbl 0124.15601
[7] Ponomarev V.: On the absolute of a topological space. Dokl. Akad. Nauk SSSR 149 26--29 (1963). MR 0157355
[8] White H.E.: First countable spaces that have countable pseudo-bases. Canad. Math. Bull. 21 103--112 (1978). DOI 10.4153/CMB-1978-016-5 | MR 0482615
Partner of
EuDML logo