[2] Tetsuya, A:
Strong semimodular lattices and Frankl’s conjecture. Algebra Universalis 44 (2000), 379–382.
MR 1816032 |
Zbl 1013.06008
[3] Tetsuya A., Bumpei N.:
Frankl’s conjecture is true for modular lattices, Graphs and Combinatorics. 14 (1998), 305–311.
MR 1658869
[4] Tetsuya A., Bumpei N.:
Lower semimodular types of lattices: Frankl’s conjecture holds for lower quasi-semimodular lattices. Graphs Combin. 16, 1 (2000), 1–16.
MR 1750462 |
Zbl 0948.06006
[6] Czédli G.:
On averaging Frankl’s conjecture for large union-closed sets. Journal of Combinatorial Theory - Series A, to appear.
Zbl 1206.05099
[7] Czédli G., Schmidt E. T.:
How to derive finite semimodular lattices from distributive lattices?. Acta Mathematica Hungarica, to appear.
MR 2452806 |
Zbl 1199.06028
[8] Czédli G., Maróti, M, Schmidt E. T.:
On the scope of averaging for Frankl’s conjecture. Order, submitted.
Zbl 1229.05259
[9] Frankl P.:
Extremal set systems. Handbook of combinatorics. Vol. 1, 2, 1293–1329, Elsevier, Amsterdam, 1995.
MR 1373680
[10] Weidong G.,Hongquan Y.:
Note on the union-closed sets conjecture. Ars Combin. 49 (1998), 280–288.
MR 1633064 |
Zbl 0963.05129
[11] Grätzer G.: General Lattice Theory. :
Birkhäuser Verlag, Basel–Stuttgart. 1978, sec. edi. 1998.
MR 0504338
[12] Grätzer G., Knapp E.:
A note on planar semimodular lattices. Algebra Universalis 58 (2008), 497-499.
MR 2443218 |
Zbl 1223.06006
[15] Reinhold J.:
Frankl’s conjecture is true for lower semimodular lattices. Graphs and Combinatorics 16 (2000), 115–116.
MR 1750455 |
Zbl 0948.06007
[16] Roberts I.: Tech. Rep. No. 2/92. : School Math. Stat., Curtin Univ. Tech., Perth. 1992.
[17] Stanley R. P.: Enumerative Combinatorics, Vol. I. :
Wadsworth & Brooks/Coole, Belmont, CA. 1986.
MR 0847717