Previous |  Up |  Next

Article

Keywords:
$\Gamma $-semigroup; uniformly strongly prime ideal; Noetherian $\Gamma $-semigroup; hull-kernel topology; structure space
Summary:
In this paper we introduce the notion of the structure space of $\Gamma $-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.
References:
[1] Adhikari M. R., Das M. K.: Structure Spaces of Semirings. Bull. Cal. Math. Soc. 86 (1994), 313–317. MR 1326227 | Zbl 0821.16046
[2] Dutta T. K., Chattopadhyay S.: On uniformly strongly prime $\Gamma $-semigroup. Analele Stiintifice Ale Universitatii “AL. I. CUZA” IASI Tomul LII, s.I, Math., 2006, f.2, 325–335. MR 2341098 | Zbl 1132.20041
[3] Dutta T. K., Chattopadhyay S.: On Uniformly strongly prime $\Gamma $-semigroup (2). Accepted.
[4] Gillman L.: Rings with Hausdorff structure space. Fund. Math. 45 (1957), 1–16. MR 0092773
[5] Chattopadhyay S.: Right Orthodox $\Gamma $-semigroup. Southeast Asian Bull. of Mathematics 29 (2005), 23–30. MR 2125891 | Zbl 1066.20066
[6] Chattopadhyay S.: Right inverse $\Gamma $-semigroup. Bull. Cal. Math. Soc 93, 6 (2001), 435–442. MR 1908897 | Zbl 1002.20042
[7] Kohls C. W.: The space of prime ideals of a ring. Fund. Math. 45 (1957), 17–27. MR 0100610 | Zbl 0079.26302
[8] Saha N. K.: On $\Gamma $-semigroup III. Bull. Cal. Math. Soc. 80 (1988), 1–12. MR 0956997 | Zbl 0652.20061
[9] Sen M. K., Saha N. K.: On $\Gamma $-semigroup I. Bull. Cal. Math. Soc. 78 (1986), 180–186. MR 0851844 | Zbl 0601.20063
[10] Sen M. K., Chattopadhyay S.: Semidirect Product of a Monoid and a $\Gamma $-semigroup. East-West J. of Math. 6, 2 (2004), 131–138. MR 2225411 | Zbl 1098.20052
Partner of
EuDML logo