Previous |  Up |  Next

Article

Keywords:
banach algebra; Furi–Pera condition; fixed point theorem; measure of noncompactness; integral equations
Summary:
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is ${\mathcal D}$-Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
References:
[1] Agarwal R. A., Meehan M., O’Regan D.: Fixed Point Theory, Applications. Cambridge Tracts in Mathematics, Vol. 141: Cambridge University Press. 2001. MR 1825411
[2] Bainov D., Simeonov P.: Integral Inequalities, Applications. : Kluwer Academic Publishers. 1992. MR 1171448
[3] Banas J., Goebel K.: Measure of Noncompactness in Banach Spaces. Math., Appli., Vol. 57: Marcel Dekker, New York. 1980. MR 0591679
[4] Banas J., Knap Z.: Measure of noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146 (1990), 353–362. MR 1043105
[5] Boyd D. W., Wong J. S. W.: On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458–464. MR 0239559 | Zbl 0175.44903
[6] Burton T. A.: A fixed point theorem of Krasnozels’kĭi. Appl. Math. Lett. 11 (1998), 85–88. MR 1490385
[7] Deimling K.: Nonlinear Functional Analysis. : Springer Verlag, Berlin–Tokyo. 1985. MR 0787404
[8] Djebali S., Moussaoui T.: A class of second order BVPs on infinite intervals. Elec. Jour. Qual. Theo. Diff. Eq. 4 (2006), 1–19. MR 2219348 | Zbl 1134.34018
[9] Dhage B. C.: On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations. Jour. Math. Phys. Sci. 2, 5 (1988), 603–611. MR 0967242 | Zbl 0673.47043
[10] Dhage B. C.: On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 18 (2005), 273–280. MR 2121036 | Zbl 1092.47045
[11] Dhage B. C.: Some nonlinear alternatives in Banach algebras with applications I. Nonlinear Studies 12, 3 (2005), 271–281. MR 2163347 | Zbl 1092.47046
[12] Dhage B. C., Ntouyas S. K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnozels’kĭi–Schaefer type. Nonlinear Studies 9, 3 (2002), 307–317. MR 1918909
[13] Dhage B. C., O’Regan D.: A fixed point theorem in Banach algebras with applications to functional integral equations. Funct. Diff. Equ. 7, 3-4 (2000), 259–267. MR 1940503 | Zbl 1040.45003
[14] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ODE on noncompact intervals. Annales Polonici Mathematici 47 (1987), 331–346. MR 0927581
[15] Krasnozels’kĭi M. A.: Positive Solutions of Operator Equations. : Noordhoff, Groningen. 1964.
[16] Krasnozels’kĭi M. A.: Integral Operators in Space of Summable Functions. : Noordhoff, Leyden. 1976.
[17] O’Regan D.: Fixed-point theory for the sum of two operators. Appl. Math. Lett. 9 (1996), 1–8. Zbl 0858.34049
[18] Smart D. R.: Fixed point Theorems. : Cambridge University Press. 1974. MR 0467717
[19] Zeidler E.: Nonlinear Functional Analysis, its Applications. Vol. I: Fixed Point Theorems. : Springer Verlag, New York. 1986. MR 0816732
Partner of
EuDML logo