Previous |  Up |  Next

Article

References:
[M-T] MISÍK L.-TÓTH J. T.: Logarithmic density of sequence of integers and density of its ratio set. Journal de Théor. Nombres Bordeaux 15 (2003), 309-318. MR 2019018
[N] NIEDERREITER L.: On a measure of denseness for sequences. In: Topics in Classical Number Theory, Vol. I, II (Budapest 1981) (G. Halász, ed.), Colloq. Math. Soc. János Bolyai 34, Nort-Holland Publishing Co., Amsterdam-New York, 1984, pp. 1163-1208. MR 0781180
[S-T1] STRAUCH O.-TÓTH J. T.: Asymptotic density of $A C \mathbb N$ and density of the ratio set $R(A)$. Acta Arith. 87 (1998), 67-78. MR 1659159
[S-T2] STRAUCH O.-TÓTH J. T.: Distribution functions of ratio sequences. Publ. Math. Debrecen 58 (2001), 751-778. MR 1828725 | Zbl 1183.11042
[Š1] ŠALÁT T.: On ratio sets of sets of natural numbers. Acta Arith. 15 (1969), 273 278. MR 0242756 | Zbl 0177.07001
[Š2] ŠALÁT T.: Quotientbasen und (R)-dichte mengen. Acta Arith. 19 (1971), 63-78. MR 0292788 | Zbl 0218.10071
Partner of
EuDML logo