[1] BANG A. S. : Taltheoretiske undersogelser. Tidsskrift Math. 5 (1886), 70 80, 130-137.
[2] BIRKHOFF G. D.-VANDIVER H. S.:
On the integral divisors of $a^n - b^n$. Ann. of Math. (2) 5 (1904), 173-180.
MR 1503541
[3] FEHER J.-KISS P.:
Note on super pseudoprime numbers. Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 26 (1983), 157-159.
MR 0719787 |
Zbl 0519.10010
[5] JOO I.-PHONG B. M.:
On super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 25 (1990), 121-124.
MR 1102204 |
Zbl 0615.10016
[6] KŘÍŽEK M.-LUCA F.-SOMER L.:
17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books Math./Ouvrages Math. SMC 9, Springer-Verlag, New York, 2001.
MR 1866957 |
Zbl 1010.11002
[7] MAKOWSKI A.:
On a problem of Rotkiewicz on pseudoprime numbers. Elem. Math. 29 (1974), 13.
MR 0335424
[9] PHONG B. M.:
On super pseudoprimes which are products of three primes. Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 30 (1987), 125-129.
MR 0927816 |
Zbl 0642.10009
[10] PHONG B. M.:
On super Lucas and super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 23 (1988), 435-442.
MR 0982690 |
Zbl 0597.10004
[11] POMERANCE C.-SELFRIDGE J. L.-WAGSTAFF S. S.:
The pseudoprimes to $25\times 10^9$. Math. Comp. 35 (1980), 1003-1026.
MR 0572872
[12] ROTKIEWICZ A.: On the prime factors of the numbers $2^{p-1} - 1$. Glasgow Math. J. 9 (1968), 83-86.
[13] SCHINZEL A.:
On primitive prime factors of $a^n - b^n$. Math. Proc. Cambridge Philos. Soc. 58 (1962), 555-562.
MR 0143728
[14] SZYMICZEK K.: /:
On prime numbers p, q, and r such that pq, pr, and qr are pseudoprimes. Colloq. Math. 13 (1965), 259-263.
MR 0180522 |
Zbl 0127.01901
[15] SZYMICZEK K.:
On pseudoprimes which are products of distinct primes. Amer. Math. Monthly 74 (1967), 35-37.
MR 0205921 |
Zbl 0146.26803
[16] ZSIGMONDY K.:
Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892), 265-284.
MR 1546236