[1] CHOW Y. S., LAI T. L.:
Limiting behavior of weighted sums of independent random variables. Ann. Probab. 1 (1973), 810-824.
MR 0353426 |
Zbl 0303.60025
[2] CRISTESCU R.:
Sur la représentation intégrale de certains opérateurs linéeires. Rev. Roumaine Math. Pures Appl. 25 (1980), 519-524.
MR 0577044
[3] KANTOROVITCH V. L., VULICH B. Z., PINSKER A. G.: Funkcional'nyj analiz v poluuporiadochennych prostranstvakh. Gos. izd. techn. lit., Moskva, 1950. (Russian)
[4] KELEMENOVÁ M.:
On the expected value of vector lattice-valued random variables. Acta Math. Univ. Comenian. 56-57 (1988), 153-157.
MR 1083018
[6] PADGETT W. J., TAYLOR R. L.:
Almost sure convergence of weighted sums of random elements in Banach spaces. In: Probability in Banach Spaces, Oberwolfach, 1975. Lecture Notes in Math. 526, Springer, Berlin, 1976, pp. 187-202.
MR 0455065
[7] POTOCKÝ R.:
A weak law of large numbers for vector lattice-valued random variables. Acta Math. Univ. Comenian. 42-43 (1983), 211-214.
MR 0740751 |
Zbl 0538.60012
[8] POTOCKÝ R.:
A strong law of large numbers for identically distributed vector lattice-valued random variables. Math. Slovaca 34 (1984), 67-72.
MR 0735937 |
Zbl 0599.60038
[9] POTOCKÝ R.:
On the expected value of vector lattice-valued random variables. Math. Slovaca 36 (1986), 401-405.
MR 0871780 |
Zbl 0621.60002
[10] SCHAEFER H. H.:
Banach Lattices and Positive Operators. Grundlehren Math. Wiss. 215, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
MR 0423039 |
Zbl 0296.47023
[11] SZULGA J.:
Lattice moments of random vectors. Bull. Polish Acad. Sci. Math. 28 (1980), 87-93.
MR 0616206 |
Zbl 0486.60007
[12] TAYLOR R. L.:
Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces. Lecture Notes in Math. 672, Springer, Berlin, 1978.
MR 0513422 |
Zbl 0443.60004
[13] WANG X. C., BHASKARA RAO M.:
A note on convergence of weighted sums of random variables. J. Multivariate Anal. 15, 124-134.
MR 0755820 |
Zbl 0583.60021