Previous |  Up |  Next

Article

References:
[1] BANYAGA A.: The Structure of Classical Diffeomorphism Groups. Math. Appl. 400, Kluwer Academic Publishers, London, 1997. MR 1445290 | Zbl 0874.58005
[2] BOOTHBY W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975. MR 0426007 | Zbl 0333.53001
[3] BOURBAKI N.: Élements de mathématique. Fasc. 26: Groupes et algebres de Lie. Chap. I: Algebres de Lie. Actualités Sci. Indust. 1285 (2nd ed.), Hermann, Paris, 1971. (French) MR 0453824
[4] HAMILTON R. S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222. MR 0656198 | Zbl 0499.58003
[5] KLÍČ A., POKORNÝ P.: On dynamical systems generated by two alternating vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), 2015-2030 MR 1430981
[6] KLÍČ A., ŘEHÁČEK J.: On systems governed by two alternating vector fields. Appl. Math. 39 (1994), 57-64. MR 1254747 | Zbl 0797.34047
[7] MILNOR J.: Remarks on infinite dimensional Lie groups. In: Relativity, Groups and Topology II, Les Houches (1983), North Holland, Amstei dam-New Youik, 1984, pp. 1007-1057. MR 0830252
[8] OLVER P. J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986. MR 0836734 | Zbl 0588.22001
[9] PALIS J.: Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc. 80 (1974), 503-505. MR 0348795 | Zbl 0296.57008
[10] VARADARJAN V. S. : Lie Groups, Lie Alqebras and Their Representations. Prentice-Hall Inc., New Yersey, 1974.
[11] WOJTYNSKI W.: One-parameter subgroups and the B-C-H formula. Studia Math. 111 (1994), 163-185. MR 1301764 | Zbl 0838.22007
Partner of
EuDML logo