[1] BANYAGA A.:
The Structure of Classical Diffeomorphism Groups. Math. Appl. 400, Kluwer Academic Publishers, London, 1997.
MR 1445290 |
Zbl 0874.58005
[2] BOOTHBY W. M.:
An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975.
MR 0426007 |
Zbl 0333.53001
[3] BOURBAKI N.:
Élements de mathématique. Fasc. 26: Groupes et algebres de Lie. Chap. I: Algebres de Lie. Actualités Sci. Indust. 1285 (2nd ed.), Hermann, Paris, 1971. (French)
MR 0453824
[4] HAMILTON R. S.:
The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222.
MR 0656198 |
Zbl 0499.58003
[5] KLÍČ A., POKORNÝ P.:
On dynamical systems generated by two alternating vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), 2015-2030
MR 1430981
[6] KLÍČ A., ŘEHÁČEK J.:
On systems governed by two alternating vector fields. Appl. Math. 39 (1994), 57-64.
MR 1254747 |
Zbl 0797.34047
[7] MILNOR J.:
Remarks on infinite dimensional Lie groups. In: Relativity, Groups and Topology II, Les Houches (1983), North Holland, Amstei dam-New Youik, 1984, pp. 1007-1057.
MR 0830252
[8] OLVER P. J.:
Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986.
MR 0836734 |
Zbl 0588.22001
[9] PALIS J.:
Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc. 80 (1974), 503-505.
MR 0348795 |
Zbl 0296.57008
[10] VARADARJAN V. S. : Lie Groups, Lie Alqebras and Their Representations. Prentice-Hall Inc., New Yersey, 1974.
[11] WOJTYNSKI W.:
One-parameter subgroups and the B-C-H formula. Studia Math. 111 (1994), 163-185.
MR 1301764 |
Zbl 0838.22007