[1] FEIGENBAUM J.-SCHÄFFER A.:
Finding the prime factors of strong direct product graphs in polynomial time. Discrete Math. 109 (1992), 77-102.
MR 1192372 |
Zbl 0786.68076
[2] HELL P.-ROBERTS F.:
Analogues of the Shannon capacity of graph. Ann. Discrete Math. 12 (1982), 155-168.
MR 0806979
[3] HELL P.-NEŠETŘIL J.:
On the complexity of H-coloring. J. Combin. Theory Ser. B 48 (1990), 92-110.
MR 1047555 |
Zbl 0639.05023
[4] IMRICH W.-KLAVŽAR S.:
Product Graphs: Structure and Recognition. John Wiley k. Sons, New York, 2000.
MR 1788124 |
Zbl 0963.05002
[5] JHA P. K.:
Smallest independent dominating sets in Kronecker products of cycles. Discrete Appl. Math. (To appear).
MR 1857787 |
Zbl 0991.05083
[6] KLAVŽAR S.:
Strong products of $\chi$-critical graphs. Aequationes Math. 45 (1993), 153-162.
MR 1212381 |
Zbl 0787.05039
[8] LOVÁSZ L.:
On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25 (1979), 1-7.
MR 0514926 |
Zbl 0395.94021
[9] PETFORD A.-WELSH D.:
A randomised 3-colouring algorithm. Discrete Math. 74 (1989), 253-261.
MR 0989138 |
Zbl 0667.05025
[11] SHANNON C. E.:
The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory 2 (1956), 8-19.
MR 0089131
[12] VESEL A.:
The independence number of the strong product of cycles. Comput. Math. Appl. 36 (1998), 9-21.
MR 1647692 |
Zbl 0941.05046
[13] VESZTERGOMBI F.:
Some remarks on the chromatic number of the strong product of graphs. Acta Cybernet. 4 (1978/79), 207-212.
MR 0525046
[14] ŽEROVNIK J.:
A randomized algorithm for k-color ability. Discrete Math. 131 (1994), 379-393.
MR 1287751
[15] ŽEROVNIK J.: Pomen temperature pri nekaterih hevristikah kombinatorične optimizacije. In: Proceedings DSI, Portorož, april 2000, Slovensko Društvo Informatika Ljubljana 2000, pp. 604-609. (Slovene)