Previous |  Up |  Next

Article

References:
[1] CHAJDA I.-HALAŠ R.-KÜHR J.: Implication in MV-algebras. Algebra Universalis 52 (2004), 377-382. MR 2120523 | Zbl 1097.06011
[2] CHAJDA I.-HALAŠ R.-KÜHR J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19-33. MR 2160352 | Zbl 1099.06006
[3] CHAJDA I.-KÜHR J.: A note on interval MV-algebras. Math. Slovaca 56 (2006), 47-52. MR 2217579 | Zbl 1164.06010
[4] CHAJDA I.-KÜHR J.: GMV-algebras and meet-semilattices with sectionally antitone permutations. Math. Slovaca 56 (2006), 275 288. MR 2250079 | Zbl 1141.06002
[5] CIGNOLI R.-D'OTTAVIANO M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097 | Zbl 0937.06009
[6] DVUREČENSKIJ A.: Pseudo $MV$-algebras are intervals in $\ell$-groups. J. Aust. Мath. Soc. 72 (2002), 427-445. MR 1902211 | Zbl 1027.06014
[7] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, 1999, pp. 961-968. MR 1730100 | Zbl 0985.06007
[8] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras. Mult.-Valued Log. (Special issue dedicated to Gr. C Moisil) 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[9] JAKUBÍK J.: Direct product decompositions of pseudo MV-algebras. Arch. Math. (Brno) 37 (2001), 131-142. MR 1838410 | Zbl 1070.06003
[10] JAKUBÍK J.: On intervals and the dual of a pseudo MV-algebra. Math. Slovaca 56 (2006), 213-221. MR 2229342 | Zbl 1150.06013
[11] RACHŮNEK J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434 | Zbl 1012.06012
Partner of
EuDML logo