[Jar-Ku] J. Jarnik and J. Kurzweil:
A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (110) (1985), 116–139.
MR 0779340
[JKS] J. Jarnik, J. Kurzweil and S. Schwabik:
On Mawhin’s approach to multiple nonabsolutely convergent integral. Casopis Pest. Mat. 108 (1983), 356–380.
MR 0727536
[Ju-No 1] W.B. Jurkat and D.J.F. Nonnenmacher:
An axiomatic theory of non-absolutely convergent integrals in $R^n$. Fund. Math. 145 (1994), 221–242.
DOI 10.4064/fm-145-3-221-242 |
MR 1297406
[Ju-No 2] W.B. Jurkat and D.J.F. Nonnenmacher:
A generalized $n$-dimensional Riemann integral and the Divergence Theorem with singularities. Acta Sci. Math. (Szeged) 59 (1994), 241–256.
MR 1285443
[Ju-No 3] W.B. Jurkat and D.J.F. Nonnenmacher:
The Fundamental Theorem for the $\nu _1$-integral on more general sets and a corresponding Divergence Theorem with singularities. (to appear).
MR 1314531
[Ku-Jar] J. Kurzweil and J. Jarnik:
Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results in Mathematics 21 (1992), 138–151.
DOI 10.1007/BF03323075 |
MR 1146639
[No] D.J.F. Nonnenmacher:
Every $M_1$-integrable function is Pfeffer integrable. Czech. Math. J. 43 (118) (1993), 327–330.
MR 1211754
[Saks] S. Saks:
Theory of the integral. Dover, New York, 1964.
MR 0167578