Previous |  Up |  Next

Article

References:
[1] W.H. Abidi: A basic analogue of the Bessel polynomials. Math. Nachr. 30 (1965), 209–219. DOI 10.1002/mana.19650300308 | MR 0190382
[2] R.P. Agarwal and A. Verma: Generalized basic hypergeometric series with unconnected bases. Proc. Camb. Philos. Soc. 63 (1967), 727–734. DOI 10.1017/S0305004100041724 | MR 0212216
[3] N.A. Al-Salam: Some operational formulas for the $q$-Laguerre polynomials. Fibonacci Quaterly 22 (1984), 166–170. MR 0742847 | Zbl 0537.33006
[4] N.A. Al-Salam: On some $q$-operators with applications. Proc. Konen. Nederl. Akademicvan Wetenschappen, Ser. A 92 (1989), 1–13. MR 0993673 | Zbl 0696.47046
[5] W.A. Al-Salam: Operational representation for the Laguerre and Hermite polynomials. Duke Math. Journal 31 (1964), 127–142. MR 0159053
[6] W.A. Al-Salam and A. Verma: Orthogonality Preserving Operators. I. Atti Della Academia Nazionale Dei Lincei, ser VIII Vol.  2 VIII (1975), 833–838. MR 0440090
[7] W.A. Al-Salam and L. Carlitz: Some orthogonal $q$-polynomials. Math. Nachr. 30 (1965), 47–61. DOI 10.1002/mana.19650300105 | MR 0197804
[8] H. Exton: $q$-Hypergeometric Functions and Applications. John Wiley and Sons (Halsted Press), New York — Ellis Horwood, Chichester, 1983. MR 0708496 | Zbl 0514.33001
[9] W. Hahn: Beiträge zur Theorie der Heinschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr.. MR 0035344
[10] W. Hahn: $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr. 2 (1949). MR 0035344
[11] M.E.H. Ismail: The zeros of basic Bessel functions, the functions $J_{v+ax}(x)$ and associated orthogonal polynomials. J. Math. Anal. Appl. 86 (1982), no. 1, 1–19. DOI 10.1016/0022-247X(82)90248-7 | MR 0649849
[12] F.H. Jackson: Basic double hypergeometric functions. Quart. J. Math. (Oxford) 15 (1944), 49–61. DOI 10.1093/qmath/os-15.1.49 | MR 0011348 | Zbl 0060.19810
[13] M.A. Khan: Certain fractional $q$-integrals and $q$-derivatives. Nanta Mathematica 7 (1974), no. 1, 52–60. MR 0369630 | Zbl 0289.33009
[14] M.A. Khan: On $q$-Laguerre polynomials. Ganita 34 (1983), no. 1 and 2, 111–123. MR 0910619 | Zbl 0638.33006
[15] M.A. Khan: $q$-Analogue of certain operational formulae. Houston J. Math. 13 (1987), no. 1, 75–82. MR 0884235
[16] M.A. Khan: On a calculus for the $T_{k,q,x}$-operator. Mathematica Balkanica, New Series 6 (1992), no. 1, 83–90. MR 1170732
[17] M.A. Khan and A.H. Khan: Fractional $q$-integration and integral representations of ‘Bibasic’ double hypergeometric series of higher order. Acta Mathematica Vietnamica 11 (1986), no. 2, 234–240. MR 0882584
[18] M.A. Khan and A.H. Khan: On some characterizations of $q$-Bessel polynomials. Acta Math. Viet. 15 (1990), no. 1, 55–59. MR 1087787
[19] H.B. Mittal: Operational representation for the generalized Laguerre polynomials. Glasnik Mathematički 6(26) (1977), no. 1, 45–53. MR 0299847
[20] E.D. Rainville: Special Functions. The MacMillan Co., New York, 1960. MR 0107725 | Zbl 0092.06503
[21] L.J. Slater: Generalized Hypergeometric Functions. Cambridge University Press, 1966. MR 0201688 | Zbl 0135.28101
[22] H.M. Srivastava and H.L. Manocha: A Treatise on Generating Functions. John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester, 1984. MR 0750112
Partner of
EuDML logo