[3] N.A. Al-Salam:
Some operational formulas for the $q$-Laguerre polynomials. Fibonacci Quaterly 22 (1984), 166–170.
MR 0742847 |
Zbl 0537.33006
[4] N.A. Al-Salam:
On some $q$-operators with applications. Proc. Konen. Nederl. Akademicvan Wetenschappen, Ser. A 92 (1989), 1–13.
MR 0993673 |
Zbl 0696.47046
[5] W.A. Al-Salam:
Operational representation for the Laguerre and Hermite polynomials. Duke Math. Journal 31 (1964), 127–142.
MR 0159053
[6] W.A. Al-Salam and A. Verma:
Orthogonality Preserving Operators. I. Atti Della Academia Nazionale Dei Lincei, ser VIII Vol. 2 VIII (1975), 833–838.
MR 0440090
[8] H. Exton:
$q$-Hypergeometric Functions and Applications. John Wiley and Sons (Halsted Press), New York — Ellis Horwood, Chichester, 1983.
MR 0708496 |
Zbl 0514.33001
[9] W. Hahn:
Beiträge zur Theorie der Heinschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr..
MR 0035344
[10] W. Hahn:
$q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr. 2 (1949).
MR 0035344
[11] M.E.H. Ismail:
The zeros of basic Bessel functions, the functions $J_{v+ax}(x)$ and associated orthogonal polynomials. J. Math. Anal. Appl. 86 (1982), no. 1, 1–19.
DOI 10.1016/0022-247X(82)90248-7 |
MR 0649849
[13] M.A. Khan:
Certain fractional $q$-integrals and $q$-derivatives. Nanta Mathematica 7 (1974), no. 1, 52–60.
MR 0369630 |
Zbl 0289.33009
[15] M.A. Khan:
$q$-Analogue of certain operational formulae. Houston J. Math. 13 (1987), no. 1, 75–82.
MR 0884235
[16] M.A. Khan:
On a calculus for the $T_{k,q,x}$-operator. Mathematica Balkanica, New Series 6 (1992), no. 1, 83–90.
MR 1170732
[17] M.A. Khan and A.H. Khan:
Fractional $q$-integration and integral representations of ‘Bibasic’ double hypergeometric series of higher order. Acta Mathematica Vietnamica 11 (1986), no. 2, 234–240.
MR 0882584
[18] M.A. Khan and A.H. Khan:
On some characterizations of $q$-Bessel polynomials. Acta Math. Viet. 15 (1990), no. 1, 55–59.
MR 1087787
[19] H.B. Mittal:
Operational representation for the generalized Laguerre polynomials. Glasnik Mathematički 6(26) (1977), no. 1, 45–53.
MR 0299847
[22] H.M. Srivastava and H.L. Manocha:
A Treatise on Generating Functions. John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester, 1984.
MR 0750112