Previous |  Up |  Next

Article

References:
[B] Blair (Roll), J.D.: A generalization of the concept of cyclically ordered groups. Ph.D. Thesis. Bowling Green State University, 1976.
[C] Cohn, P.M.: Lie Groups. The University Press, Cambridge, 1967. MR 0103940
[F] Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, New York, 1983.
[H] Holland, C.: The lattice-ordered group of automorphisms of an ordered set. Mich. Math. J. 10 (1963), 399–408. DOI 10.1307/mmj/1028998976 | MR 0158009
[Hu] Husain, T.: Introduction to Topological Groups. W.B. Saunders, Philadelphia, 1966. MR 0200383 | Zbl 0136.29402
[L] Lawson, J.D.: Ordered manifolds, invariant cone fields, and semigroups. Forum Math. I (1989), 273–308. MR 1005427
[M] Megiddo, N.: Partial and complete cyclic orders. Bull. Amer. Math. Soc 82 (1976), 274–276. DOI 10.1090/S0002-9904-1976-14020-7 | MR 0404065 | Zbl 0361.06001
[N1] Novák, V.: Cyclically ordered sets. Czech. Math. Jour. 32(107) (1982), 460–473. MR 0669787
[N2] Novák, V.: Cuts in cyclically ordered sets. Czech. Math. Jour. 34(109) (1984), 322–333. MR 0743497
[R] Rieger, L.S.: On the ordered and cyclically-ordered groups I–III. Věstník Král. České Spol. Nauk 6 (1946), 1–31. MR 0020995
[S1] Swierczkowski, S.: On cyclically ordered groups. Fund. Math. 47 (1959), 161–166. DOI 10.4064/fm-47-2-161-166 | MR 0110759 | Zbl 0096.01501
[S2] Swierczkowski, S.: On cyclically ordered intervals of integers. Fund. Math. 47 (1959), 167–172. DOI 10.4064/fm-47-2-167-172 | MR 0110760 | Zbl 0097.01404
[S3] Swierczkowski, S.: On successive settings of arcs on the circumference of a circle. Fund. Math. 46 (1958), . DOI 10.4064/fm-46-2-187-189 | MR 0104651
Partner of
EuDML logo