[1] E. Albrecht:
An example of a weakly decomposable operator, which is not decomposable, Rev. Roumaine Math. Pures Appl. 20 (1975), 855–861.
MR 0377582
[3] E. Albrecht and J. Eschmeier:
Analytic functional models and local spectral theory. Preprint University of Saarbrücken and University of Münster, 1991.
MR 1455859
[4] E. Albrecht, J. Eschmeier and M. M. Neumann:
Some topics in the theory of decomposable operators. in: Advances in invariant subspaces and other results of operator theory, Operator Theory: Advances and Applications, vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34.
MR 0901056
[5] S. K. Berberian:
Lectures in functional analysis and operator theory. Springer-Verlag, New York, 1974.
MR 0417727 |
Zbl 0296.46002
[8] I. Colojoară and C. Foiaş:
Theory of generalized spectral operators. Gordon and Breach, New York, 1968.
MR 0394282
[10] J. Eschmeier:
Operator decomposability and weakly continuous representations of locally compact abelian groups. J. Operator Theory 7 (1982), 201–208.
MR 0658608 |
Zbl 0489.47019
[11] J. Eschmeier:
Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42. Münster, 1987.
MR 0876484
[12] J. Eschmeier and B. Prunaru:
Invariant subspaces for operators with Bishop’s property $(\beta )$ and thick spectrum. J. Functional Analysis 94 (1990), 196–222.
DOI 10.1016/0022-1236(90)90034-I |
MR 1077551
[13] L. A. Fialkow:
A note on quasisimilarity of operators. Acta Sci. Math. (Szeged) 39 (1977), 67–85.
MR 0445319 |
Zbl 0364.47020
[18] K. B. Laursen and M. M. Neumann:
Local spectral properties of multipliers on Banach algebras. Arch. Math. 58 (1992), 368–375.
DOI 10.1007/BF01189927 |
MR 1152625
[19] K. B. Laursen and P. Vrbová:
Some remarks on the surjectivity spectrum of linear operators. Czech. Math. J. 39 (114) (1989), 730–739.
MR 1018009
[23] J. G. Stampfli:
Quasi-similarity of operators. Proc. Royal Irish Acad. Sect. A 81 (1981), 109–119.
MR 0635584
[24] F.-H. Vasilescu: Analytic functional calculus and spect ral decompositions. Editura Academiei and D. Reidel Publishing Company, Bucureşti and Dordrecht, 1982.
[25] P. Vrbová:
On local spectral properties of operators in Banach spaces. Czech. Math. J. 23 (98) (1973), 483–492.
MR 0322536