Previous |  Up |  Next

Article

References:
[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs $\&$ Digraphs. Prindle, Weber $\&$ Schmidt, Boston, 1979. MR 0525578
[2] G. Chartrand, R. E. Pippert: Locally connected graphs. Časopis pěst. mat. 99 (1974), 158–163. MR 0398872
[3] A. D. Glukhov: On chord-critical graphs. In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 24–27. (Russian) MR 0583198
[4] N. P. Homenko, A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph. In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
[5] N. P. Homenko, N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of graphs. In: $\phi $-Transformations of Graphs, N. P. Homenko (ed.), IM AN USSR, Kiev, 1973, pp. 180–210. (Ukrainian, English summary) MR 0422065
[6] M. Jungerman: A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401–406. MR 0492309 | Zbl 0379.05025
[7] L. Nebeský: A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31 (106) (1981), 604–613. MR 0631605
[8] L. Nebeský: On locally quasiconnected graphs and their upper embeddability. Czechoslovak Math. J. 35 (110) (1985), 162–166. MR 0779344
[9] L. Nebeský: $N_2$-locally connected graphs and their upper embeddability. Czechoslovak Math. J. 41 (116) (1991), 731–735. MR 1134962
[10] R. Nedela, M. Škoviera: On graphs embeddable with short faces. In: Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. MR 1100074
[11] Z. Ryjáček: On graphs with isomorphic, non-isomorphic and connected $N_2$-neighbourhoods. Časopis pěst. mat. 12 (1987), 66–79.
[12] A. T. White: Graphs, Groups, and Surfaces. North-Holland, Amsterdam, 1973. Zbl 0268.05102
[13] N. H. Xuong: How to determine the maximum genus of a graph. J. Combinatorial Theory Ser. B 26 (1979), 217–225. DOI 10.1016/0095-8956(79)90058-3 | MR 0532589 | Zbl 0403.05035
Partner of
EuDML logo