Previous |  Up |  Next

Article

References:
[1] R. Balbes and P. Dwinger: Distributive lattices. University of Missouri Press, 1974. MR 0373985
[2] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux réticulés. Springer LNM 608 (1978). MR 0552653
[3] S. Burris and H. P. Sankappanavar: A course in universal algebra. Springer–Verlag, New York–Heidelberg–Berlin, 1981. MR 0648287
[4] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[5] C. C. Chang: A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math. Soc. 93 (1959), 74–80. MR 0122718 | Zbl 0093.01104
[6] J. Font, A. Rodríguez and A. Torrens: Wajsberg algebras. Stochastica, VIII (1984), 5–31. MR 0780136
[7] F. Lacava: Alcune proprietà delle ł-algebre e delle t-algebre essistenzialmente chiuse. Boll. Unione Mat. Italiana (5) 16A (1979), 360–366.
[8] D. Mundici: Interpretation of $C^*$-Algebras in Łukasiewicz sentential calculus. J. Func. An. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[9] L. Rieger: On ordered and cyclically ordered groups I, II, III. Věstník král. české spol. nauk (1946 1947 1948), 1–31 1-33 1–26, In Czech. MR 0020995
[10] S. Swierczkowski: On cyclically ordered groups. Fund. Math. 47 (1959), 161–166. DOI 10.4064/fm-47-2-161-166 | MR 0110759 | Zbl 0096.01501
[11] A. Torrens: W-algebras which are Boolean products of members of SR[1] and CW-algebras. Studia Logica, XXLVI 33 (1987), 263–272. MR 0938720 | Zbl 0621.03042
[12] V. Weispfenning: Elimination of quantifiers for certain ordered and lattice-ordered abelian groups. Bull. Soc. Math. Belg., XXXIII (1981), Fasc. I, serie B, 131–155. MR 0620968 | Zbl 0499.03012
[13] A. I. Zabarina and G. G. Pestov: Swierczkowski’s theorem. Sibirski Math. J. 25 (1984), 46–53. MR 0754739
[14] S. D. Zheleva: Cyclically ordered groups. Sibirski Math. J. 17 (1976), 1046–1051. Zbl 0362.06022
Partner of
EuDML logo