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This note has been motivated by the following three theorems:

Theorem A (Glukhov [3]). If G is a 2-connected multigraph with the property
that each edge of i belongs to a cycle of length 2 or 3, then G is upper embeddable.

Theorem B (Nebesky [8]). If G is a connected, locally quasiconnected graph,
then G is upper embeddable.

Theorem C (Nebesky [9]). IfG is a connected, Na-locally connected graph, then
G is upper embeddable.

In this note we will give a common generalization of Theorems A, B, and C.

Let G be a multigraph (in the sense of [1], for example) with a vertex set V(G)
and an edge set E((). We say that a multigraph F is a submultigraph of G if
V(F) C V(G), E(F) C E(G) and the implication

if a vertex u and an edge e are incident in F, then they are incident in G

holds for any u € V(F) and e € E(F). If W C V(G), W # 0, then we say that H
is the submultigraph of (i induced by W if H is a submultigraph of G, V(H) = W,
and each edge of (i incident only with vertices in W belongs to H. If A C E(G),
then we say that H' is the subinultigraph of G induced by A if H' is a submultigraph
of G, E(H') = A, and a vertex of G belongs to H' if and only if it is incident with
an edge in A. Let u € V((); we denote by V(u,G) the set of all vertices adjacent
to u in (; moreover, we denote by E(u,G) the set of all edges e in G with the
properties that e is not incident with u but e is incident with a vertex adjacent to u
in G if V(u,G) # 0, then we denote by N(u,G) the submultigraph of G induced by
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V(u, G); finally, if E(u, (') # 0, then we denote by N2(u, G) the submultigraph of G
induced by E(u,G). We say that G is locally connected if V(v,G) # @ and N(v,G)
is connected for each v € V((’). We say that G is locally quasiconnected if at least
one of the multigraphs N (v, G) and N(vz, G) is connected, for each pair of adjacent
vertices v; and vy of i. Finally, we say that (i is Na-locally connected if E(v,G) # @
and N2(v, () is connected, for each v € V(G). Clearly, if G is locally connected and
no component of GG has less than 3 vertices, then G is both locally quasiconnected
and Ns-locally connected.

For locally connected graphs, locally quasiconnected graphs, or Nj-locally con-
nected graphs, see [2], [8], or [11], respectively. Recall that a multigraph is a graph
if and only if it has no parallel edges.

Figure 1 shows three examples of connected graphs: G is 2-connected, each edge
of GGy belongs to a triangle; as we can see, (7 is neither locally quasiconnected nor
Ns-locally connected. G5 is locally quasiconnected; it is neither 2-connected nor
Ny-locally connected. (3 is Na-locally connected; it is not locally quasiconnected
(and, of course, it contains no triangle).

Gy: Go: Gs:

Fig.1

If F is a multigraph with |V(F)| > 2 and u € V(F), then we say that u is a
cut-vertex of F if the multigraph F' — u has more components than F has. We
shall introduce the main notion of the present note. We say that a multigraph G is
tnterlaced if the following two conditions hold:

(i) if no cycle of length 2 or 3 is passing through an edge incident both with u
and with v, then both Nj(u,G) and Na(v,G) are connected, for each pair of
adjacent vertices u and v of (;

(i) N(w, @) is connected, for each vertex w which is adjacent to a cut-vertex of G.

Let G be a connected multigraph with |V(G)| > 3. It is easy to see that if G is
locally quasiconnected, then each edge of (G belongs to a triangle. Thus, it is clear
that if either (a) G has no cut-vertex and each edge of G belongs to a cycle of length
2 or 3, or (b) G is locally quasiconnected, or (¢) G is N2-locally connected with no
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Fig.2 Fig.3

cut-vertex, then G is interlaced. Fig.2 shows two examples of connected interlaced
graphs fulfilling none of the conditions (a), (b), ().

In the present note we shall prove that every connected interlaced multigraph is
upper embeddable. As a step to this result we shall prove a theorem on a certain
global property of connected interlaced multigraphs.

Let GG be a multigraph. Consider a partition 2 of V(G). Let Z C 2?; we denote
by E&(G) the set of all e € E(G) with the property that the vertices incident with
e in G belong to two distinct elements of 2; the submultigraph of ¢ induced by

U=r

Rez

will be denoted by G(£). If
|P]>2 and G({P}) is connected for each P € 2,

then £ will be referred to as a C-partition of G.

The following theorem is a generalization of Theorem 1 in [9].

Theorem 1. Let G be a connected interlaced multigraph. Then
(1) |E2(G)| 2 2(|2] - 1)

for every C-partition of G.

Proof. If |[V(G)| = 1, then the statement of the theorem holds trivially. Let
[V(G)| 2 2. Then there exists a C-partition of G. Consider a C-partition 2 of G.
We proceed by induction on |2|. If | 2| = 1, then E»(G) = 0, and thus (1) holds.
Assume that || > 2. We distinguish two cases.
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1. Assume that there exist distinct Py, P» € £ such that

|E(p,, P} (G)| > 2.

Denote P/ = P\UP; and &' = (£ —{P;, P2})U{P’}. Obviously, 2 is a C-partition
of G. Since | 2’| = | 2| — 1, it follows from the induction hypothesis that

|Es(G)| 2 202| - 1) = 2(2| - 1) - 2.

Since |Eei(G)| < |E2(G)| — 2, we get (1).
2. Assume that

(2) |E{p+ p--)(G)| <1 for any distinct P*, P** € 2.

As follows from (2), no edge in Es(G) belongs to a cycle of length 2 (i.e. no edges
in Ex(G) are parallel). If e € Es(G) and u and v are the vertices incident with e,
then for the sake of simplicity we will write e = uv.

We first assume that there exists a cut-vertex u of G incident with an edge in
E»(G). Then there exists v € V(G) such that v # v and uv € Ex(G). As follows
from definition of an interlaced multigraph, N (v, G) is connected. Let P, denote the
element of & containing v. Since v is incident with an edge in Es(G) and |P,| > 2,
we can see that there exist w;,w, € N(v,G) such that w; € P,, wy ¢ P,, and
wiws € E»(G). Since wy € N(v,G), we have that ws is adjacent to v in G. Let P’
denote the element of &2 containing w,. Since v # wy, we get that |E(p, py(G)] 2> 2,
which is a contradiction with (2). Thus, no cut-vertex of G is incident with an edge
in Ea(G).

Consider an arbitrary P € £ and an arbitrary u € P such that u is incident with
an edge e in Ez((). It follows from the definition of an interlaced multigraph that
either e belongs to a triangle or Na(u,G) is connected. Clearly, |P| > 2 and u is
not a cut-vertex of (G. Thus, we can derive from (2) that there exist distinct P,
P € P — {P} and wy, up, v € V(G) such that v € P, u; € Py, us € P, and uu,,
ujuy, usv € Eg(() (note that the case when v = u is possible). This observation
can be summarized as follows:

(3) forevery P € £ and every u € P such that u is incident with an edge in E»(G)
there exist distinct Py, P, € &2 — {P} and u;,uz,v € V(G) such that v € P,
uy € Py, us € P and uuy, ujus, uav € Ex(G).

We will construct sets 2™, X™ and Y™ for every integer m > 1. We will proceed
by induction on m.

Consider an arbitrary P! € 2. Since |2| > 2 and G is connected, there exists
u' € P! such that u' is incident with an edge in Es(G). According to (3), we can
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find distinct P}, P} € 2 — {P!} and vertices u} € P}, u} € P}, v! € P! such
that u'u}, ujul ulv! € Ex(G). Denote 2' = {P', P!, P}}, X! = {uju},ujv'} and
Y! = {u'u}}.

Let m > 2. Assume that the sets 2~!, X™=1 and Y™~! have been constructed.
We first assume that there exists P™ € 2™~! — {P'} such that exactly one vertex
in P™, say a vertex w™, is incident with an edge in X™~'UY™~!. Since w™ is not a
cut-vertex of G, there exists u™ € P™ — {w™} such that 4™ is incident with an edge
in Ex(G). According to (3), there exist distinct P{", PI* € 22 — {P™} and vertices
ul* € P, uh* € P*, v™ € P™ such that u™ul*, ulul, uf'v™ € Ex(G). We put
@™ = @™ U {P", P}. We denote by ™ the set of all P € 2™~ ! — {P'}
such that exactly one vertex of P is incident with an edge in X™~ 'y y™-! If
P € ™, then we denote by w™(P) the vertex of P which is incident with an edge
in Ex(G). Obviously, P™ € ™ and w™ = w™(P™). We put X™ = X™"1u X
and Y™ = Y™y {um™u}UY, where

X C {uTuy, uyv™}, Y C {uPuf’,uf'v™} - X,

uPuy € X ifand only if P* ¢ @™,

up'v™ € X if and only if P)* ¢ 2™,

u'uy' €Y ifandonly if P €™ and uf" #w™(P"), and

uy'v™ €Y ifandonly if PJ' € Y™ and uy #w™(P).
Clearly, Y™ — ym-1 £ @,

We shall now assume that there exists no P € 2™~! — {P'} such that exactly
one vertex in P is incident with an edge in X™~ ! U Y™~ We put 2" = 2™ !,
X™ = X™=1and Y™ = Y™~ Moreover, we denote 9™ = 0.

Since Ex((G) is finite, we see that there exists an integer n > 1 such that

Y® — YY"~ 1 £ @and Y**! = ¥™. Obviously, Y/ = Y™ for every integer j > 1. We
put % = Z". By the construction we get

XEAYE= 0, (XE = (=1, || = |2 = )
XFUY* C Egu(G), and G(%*) is connected

for every integer k, | < k < n. Hence, X" NY" =@, |X"|=|2|—1and |Y"| = |2
Thus, we have obtained that

(4) |Ex(C)] > 2|2) - 1.

Denote

PR=|JP

Pex
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and Py = (P — Z)U {Py}. It is obvious that 2, is a C-partition of Gi. Since
| %] < |22, it follows from the induction hypothesis that

(5) |E2,(G)] 2 2(| 20| - 1).

Clearly, E&(G) = E#,(G)U E4(G), Ex,(G)NEg(G) =0 and || = || -1+
|2|. Combining (4) and (5), we get that |Es(G)| > 2|2| — 1. Thus, (2) holds. The
proof is complete. O

The upper embeddability belongs to central notions in the study of the maximum
genus of a pseudograph; cf. [12] or Chapter 5 in [1]. (Note that a pseudograph is a
multigraph if and only if it is loopless). Let G be a connected pseudograph. If there
exists a 2-cell embedding of G into the closed orientable surface of genus

RUE@G) = V(G) +1)],

then G is called upper embeddable.

Let H be a pseudograph. We denote by b(#) the number of components F' of H
such that |E(H)| — |V(H)] is even. Moreover, we denote by ¢(H) the number of all
components of H.

We shall need the following theorem:

Theorem D. If G is a connected pseudograph, then the statements (6), (7) and
(8) are equivalent:

(6) G is upper embeddable;

(7) there exists a spanning tree T of G such that at most one component of
G — E(T) has an odd number of edges;

(8) 4] = b(G — A) + ¢(G — A) — 2 for every A C E(G).

The equivalence (6) < (7) was proved independently in [4], [6] and [13]; the
equivalence (7) < (8) was proved independently in [3] and [7]. (However, the results
in [3] and [4] were formulated rather differently.)

The following theorem can be proved in the same way as Theorem 2 in [9].

Theorem 2. Let G be a connected interlaced multigraph. Then G is upper
embeddable.

Proof (outlined). There exists A C E(G) such that

(G — A) + (G — A) =2~ |A| 2 b(G = A') + ¢(G — A') — 2 — | A'|
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for every A’ C E(G) and
b((G—A)+c(G—A)—2—|A] >bG - A")+ (G- A")—-2-|A"|

for every A” C E(G) such that |A”| < |A|. It is not difficult to show that there
exists a C-partition £ of G such that A = E»(G). As follows from Theorem 1,
|A} > 2(¢(G — A) — 1). Clearly, 2(¢(G — A) = 1) 2 (G — A) + ¢(G — A) — 2. The

result of the theorem can be derived from the implication (8) = (6). a

It is clear that Theorems A and B are consequences of Theorem 2. The following
corollary of Theorem 2 is a common generalization of Theorems A, B and C. The
corollary can be easily derived from Theorem 2 by the equivalence (6) & (7).

Corollary 1. Let GG be a connected multigraph, and let W be a nonempty subset
of V(G). Assume that the submultigraph of GG induced by W is connected and
interlaced, and that either W = V(G) or G — W is a forest. Then G is upper
embeddable.

If G is connected, N-locally connected graph, then-as was shown in [11]-at most
one block of GG contains a cycle. This is not true for multigraphs; the multigraph
Ge in Fig.3 is an example of a connected Nj-locally connected multigraph with
three blocks, each of them containing a cycle. It is not difficult to show that if G is
a connected, Nj-locally connected multigraph such that exactly one block H of G
contains a cycle, then H is interlaced. Combining this observation with Corollary 1,
we get the following result:

Corollary 2. Let (i be a connected, Nq-locally connected multigraph. If at most
one block of G contains a cycle, then G is upper embeddable.

Note that multigraph Gg in Fig.3 is not upper embeddable.

Remark. The subject of the present note is not too far from the subject of the
paper [10]. Nedela and Skoviera [10] proved that if G is a connected multigraph such
that there exists a 2-cell embedding of G in a closed surface with the property that
the length of no face is greater than 4, then G is upper embeddable. In June 1991,
the author of the present note was informed by Nedela and Skoviera that if G is a
graph (i.e. a multigraph with no parallel edges), then the result of [10] can be derived
from Theorem C.
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