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LOCAL PROPERTIES AND UPPER EMBEDDABILITY 

O F CONNECTED MULTIGRAPHS 

LADISLAV NEBESKY, Praha 

(Received September 3, 1991) 

This note has been motivated by the following three theorems: 

T h e o r e m A (Glukhov [3]). If G is a 2-connected multigraph with the property 

that each edge ofG belongs to a cycle of length 2 or 3, then G is upper embeddable. 

T h e o r e m B (Nebesky [8]). If G is a connected, locally quasiconnected graph, 

then G is upper embeddable. 

T h e o r e m C (Nebesky [9]). If G is a connected, N2-/oca//y connected graph, then 

G is upper embeddable. 

In this note we will give a common generalization of Theorems A, B, and C . 

Let G be a multigraph (in the sense of [1], for example) with a vertex set V(G) 

and an edge set E(G). We say that a multigraph F is a submultigraph of G if 

V(F) C V(G), E(F) C E(G) and the implication 

if a vertex u and an edge e are incident in F, then they are incident in G 

holds for any u G V(F) and e G E(F). If W C V(G), W £ 0, then we say that II 

is the submultigraph of G induced by IV if II is a submultigraph of G, V(/I) = W, 

and each edge of G incident only with vertices in W belongs to H. If A C E(G), 

then we say that H1 is the submultigraph of G induced by A if H' is a submultigraph 

of G, E(Hf) = A, and a vertex of G belongs to H' if and only if it is incident with 

an edge in A. Let u G V(G)\ we denote by V(u,G) the set of all vertices adjacent 

to u in G; moreover, we denote by E(u,G) the set of all edges e in G with the 

properties that e is not incident with u but e is incident with a vertex adjacent to u 

in G; if V(u, G) ^ 0, then we denote by N(u, G) the submultigraph of G induced by 

241 



V(u, G) ; finally, if E(u, G) ^ 0, then we denote by Nz(u, G) the submultigraph of G 

induced by E(u,G). We say that G is locally connected if V(v,G) 7- 0 and N(v,G) 

is connected for each v G V(G). We say that G is locally quasiconnected if at least 

one of the multigraphs N(v\, G) and N(v25 G) is connected, for each pair of adjacent 

vertices v\ and v-i of G. Finally, we say that G is N2-locally connected if E(v) G) ^ 0 

and N2(u,G) is connected, for each v £ V(G). Clearly, if G is locally connected and 

no component of G has less than 3 vertices, then G is both locally quasiconnected 

and N2-locally connected. 

For locally connected graphs, locally quasiconnected graphs, or N2-locally con­

nected graphs, see [2], [8], or [11], respectively. Recall that a multigraph is a graph 

if and only if it has no parallel edges. 

Figure 1 shows three examples of connected graphs: G\ is 2-connected, each edge 

of G\ belongs to a triangle; as we can see, G\ is neither locally quasiconnected nor 

N2-Iocally connected. G2 is locally quasiconnected; it is neither 2-connected nor 

N2-locally connected. G3 is N2-locally connected; it is not locally quasiconnected 

(and, of course, it contains no triangle). 

G,: 6*2 

O O 

0—6—0 

ô—<S—<j> 

ô — ó 

F i g . l 

If F is a multigraph with | V ( F ) | ^ 2 and u £ V(F), then we say that u is a 

cut-vertex of F if the multigraph F — u has more components than F has. We 

shall introduce the main notion of the present note. We say that a multigraph G is 

interlaced if the following two conditions hold: 

(i) if no cycle of length 2 or 3 is passing through an edge incident both with u 

and with v, then both N2(u,G) and N2(t;,G) are connected, for each pair of 

adjacent vertices u and v of G; 

(ii) N(w,G) is connected, for each vertex w which is adjacent to a cut-vertex of G. 

Let G be a connected multigraph with | V ( G ) | ^ 3. It is easy to see that if G is 

locally quasiconnected, then each edge of G belongs to a triangle. Thus, it is clear 

tha t if either (a) G has no cut-vertex and each edge of G belongs to a cycle of length 

2 or 3, or (b) G is locally quasiconnected, or (c) G is N2-locally connected with no 
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G4: G5: Gв: 

Fig.2 Fig.З 

cut-vertex, then G is interlaced. Fig. 2 shows two examples of connected interlaced 

graphs fulfilling none of the conditions (a), (b), (c). 

In the present note we shall prove that every connected interlaced multigraph is 

upper ernbeddable. As a step to this result we shall prove a theorem on a certain 

global property of connected interlaced multigraphs. 

Let G be a multigraph. Consider a partition & of V(G). Let & C £P\ we denote 

by E&(G) the set of all e G E(G) with the property that the vertices incident with 

e in G belong to two distinct elements of &\ the subrnultigraph of G induced by 

U* 

will be denoted by G(&). If 

\P\ ^ 2 and 6'({P}) is connected for each P € ^ , 

then & will be referred to as a 6-partition of G. 

The following theorem is a generalization of Theorem 1 in [9]. 

Theorem 1. Let G be a connected interlaced multigraph. Then 

(1) \EMG)\>2(\&\-1) 

for every C'-partition ofG. 

P r o o f . If |V (6 ) | = 1, then the statement of the theorem holds trivially. Let 
|V(G)| ^ 2. Then there exists a 6f-partition of G. Consider a 6f-partition & of G. 

We proceed by induction on \&\. If \&\ = 1, then E&(G) = 0, and thus (1) holds. 
Assume that \&*\ ̂  2. We distinguish two cases. 
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1. Assume tha t there exist distinct Pi, P2 G 9 such that 

\E{P„P2)(G)\^2. 

Denote P' = P1UP0 and 9>' = ( ^ - { P 1 } P2})u{P'}. Obviously, 9' is a G-partition 

of G. Since l ^ l = \9\ — 1, it follows from the induction hypothesis tha t 

\E*,(G)\ > 2(\9>'\ - 1) = 2 ( | . ^ | - 1) - 2 . 

Since \E&>(G)\ <J \E&(G)\ - 2, we get (1). 

2. Assume tha t 

(2) | £ { P % p . , } ( G ) | -̂  1 for any distinct P\ P** G 9 . 

As follows from (2), no edge in E&(G) belongs to a cycle of length 2 (i.e. no edges 

in E&(G) are parallel). If e G E&(G) and ii and v are the vertices incident with e, 

then for the sake of simplicity we will write e = uv. 

We first assume that there exists a cut-vertex u of G incident with an edge in 

E&(G). Then there exists v G V(G) such that v ?- u and uv G E&(G). As follows 

from definition of an interlaced multigraph, N(v,G) is connected. Let Pv denote the 

element of 9* containing v. Since v is incident with an edge in E&(G) and |PV | ^ 2, 

we can see tha t there exist w i , w 2 G N(v,G) such that w\ G Pv, w2 £ Pv, and 

W\W2 G E&(G). Since /̂;2 G N(v,G), we have that iv2 is adjacent to v in G. Let P' 

denote the element of 9* containing w2. Since v ^ w\, we get that |K{p l f ,p '}(G)| ^ 2, 

which is a contradiction with (2). Thus, no cut-vertex of G is incident with an edge 

in E&(G). 

Consider an arbitrary P G 9 and an arbitrary u G P such that u is incident with 

an edge e in E&(G). It follows from the definition of an interlaced multigraph tha t 

either e belongs to a triangle or N2(w,G) is connected. Clearly, | P | ^ 2 and u is 

not a cut-vertex of G. Thus, we can derive from (2) that there exist distinct Pi, 

P2 G 9 - {P} and uu i/2, v G V(G) such that v G P, ui G Pi, w2 G P2 and uuu 

u\U2, U2V G E&(G) (note that the case when v = w is possible). This observation 

can be summarized as follows: 

(3) for every P G #* and every u G P such that ii is incident with an edge in E&>(G) 

there exist distinct Pt, P2 G «^— {P} and u\,U2,v G V(G) such tha t v G P, 

ui G Pi, î2 G P2 and uu\,u\U2,u2v G E&(G). 

We will construct sets £# m , A"m and Ym for every integer m ^ 1. We will proceed 

by induction on m. 

Consider an arbitrary P1 G 9 . Since | ^ | ^ 2 and G is connected, there exists 

ul G P1 such tha t ^̂ 1 is incident with an edge in E&(G). According to (3), we can 
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j m - 1 

find distinct Pf, P$ G & - {P1} and vertices u\ G P/, u\ G P2, v1 G P1 such 
that uxu\,u\u\,u\vx G E&(G). Denote ^ = {P1, P/, P2

!}, X1 = {i-}u2, tijt/
1} and 

y1 = Ku}} . 
Let m ^ 2. Assume that the sets ^ ? m - 1 , K™^1, and Ym~l have been constructed. 

We first assume that there exists Pm G ^?m""1 — {P1} such that exactly one vertex 
in Pm, say a vertex wm, is incident with an edge in Xm~l UYm~l. Since wm is not a 
cut-vertex of G, there exists um G Pm — {wm} such that um is incident with an edge 
in E&(G). According to (3), there exist distinct P[n,P!p G & - {Pm} and vertices 
um G Pr, um G P2

m, vm G Pm such that umum, umum, umvm G E&(G). We put 
^ m = ^ m - i y {p™,F™}. We denote by Sfm the set of all P G ^ > m " 1 - {P1} 
such that exactly one vertex of P is incident with an edge in Km_1 U Ym~l. If 
P G ym, then we denote by tvm(P) the vertex of P which is incident with an edge 
in E&(G). Obviously, Pm G ym and tvm = ivm(Pm) . We put Xm = Xm~x UK 
and V'm = Ym~l U { « m « n u y , where 

X C {timw2
n,i/2"vm}, y C {umum,umvm} - K, 

< V2
n G X if and only if Pm <£ &" 

umvm G X if and only if P2
m £ # " 

< * < G y if and only if Pm G ^ m and i/m # wm(Pr), and 
umvm G y if and only if P2

m G ̂ m and um 7- wm(P^). 

Clearly, r - V " 1 " 1 ?-0. 
We shall now assume that there exists no P G ^m~"1 — {P1} such that exactly 

one vertex in P is incident with an edge in Xm~l U V'"1""1. We put &m = <&m~l
y 

A'm = A'™-1 and y m = Ym~l. Moreover, we denote 5?m = 0. 
Since E&(G) is finite, we see that there exists an integer n > 1 such that 

yn _ y n - i ^ 0 a | l d yn+i = yn Obviously, yn+.> = Yn for every integer j ^ 1. We 
put .^ = &n. By the construction we get 

xk ny* = 0, |,Y*| = |#*| - i, |y*| = |#*| - |^*+1|, 

A* U y* C E&(G), and G'(#*) is connected 

for every integer t , 1 ̂  k ^ n. Hence, Xn C\Yn = 0, |A n | = \0\ - 1 and | y n | = | ^ | . 
Thus, we have obtained that 

(4) | £ ? , ( C ) | £ 2 | . * | - 1 . 

Denote 

I^UI* 
P6^? 
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and t?o =:(&*— <%) U {Po}- It is obvious that £?$ is a C-partition of G. Since 
|«^o| < | ^ | , it follows from the induction hypothesis that 

(5) | K ^ 0 ( G ) | ^ 2 ( | ^ 0 | - 1 ) . 

Clearly, E&(G) = ^ 0 ( G ) U ^ ( C ) , E<?0(G) 0 E#(G) = 0 and \&\ = | <3*0| - 1 + 
\&\. Combining (4) and (5), we get that \E&(G)\ > 2\&\- 1. Thus, (2) holds. The 
proof is complete. • 

The upper embeddability belongs to central notions in the study of the maximum 
genus of a pseudograph; cf. [12] or Chapter 5 in [1]. (Note that a pseudograph is a 
multigraph if and only if it is loopless). Let G be a connected pseudograph. If there 
exists a 2-cell embedding of G into the closed orientable surface of genus 

[i(|£(c;)|-|v(o)| + i)], 

then G is called upper embeddable. 
Let H be a pseudograph. We denote by 6(H) the number of components F of H 

such that IF^H)! — |V(H) | is even. Moreover, we denote by c(H) the number of all 
components of H. 

We shall need the following theorem: 

Theorem D. If G is a connected pseudograph, then the statements (6), (7) and 
(8) are equivalent: 

(6) G is upper embeddable; 

(7) there exists a spanning tree T of G such that at most one component of 

G — E(T) has an odd number of edges; 

(8) \A\ > b(G - A) + c(G - A) - 2 for every A C E(G). 

The equivalence (6) <-> (7) was proved independently in [4], [6] and [13]; the 

equivalence (7) O (8) was proved independently in [3] and [7]. (However, the results 

in [3] and [4] were formulated rather differently.) 

The following theorem can be proved in the same way as Theorem 2 in [9]. 

Theorem 2. Let G be a connected interlaced multigraph. Then G is upper 
embeddable. 

P r o o f (outlined). There exists A C E(G) such that 

b(G - A) + c(G - A) - 2 - | A | $> b(G - A') + c(G - A') - 2 - | ^ ' | 
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for every A1 C E(G) and 

b(G - A) + c(G - A) - 2 - \A\ > b(G - A") + c(G - A") - 2 - \A"\ 

for every A" C E(G) such that \A"\ < \A\. It is not difficult to show tha t there 

exists a C-partition 2? of G such that A = E<?(G). As follows from Theorem 1, 

\A\ > 2(c(G - A ) - 1). Clearly, 2(c(G - A) - 1) ^ 6(G - A) + c(G - ,4) - 2. The 

result of the theorem can be derived from the implication (8) =-> (6). • 

It is clear tha t Theorems A and B are consequences of Theorem 2. The following 

corollary of Theorem 2 is a common generalization of Theorems A, B and C. The 

corollary can be easily derived from Theorem 2 by the equivalence (6) <=> (7). 

Corol lary 1. Let G be a connected multigraph, and let W be a nonempty subset 

of V(G). Assume that the submultigraph of G induced by W is connected and 

interlaced, and that either W — V(G) or G — W is a forest. Then G is upper 

embeddable. 

If G is connected, N2-locally connected graph, then-as was shown in [ l l ] - a t most 

one block of G contains a cycle. This is not true for multigraphs; the multigraph 

G*6 in Fig. 3 is an example of a connected N2-locally connected multigraph with 

three blocks, each of them containing a cycle. It is not difficult to show tha t if G is 

a connected, N2-locally connected multigraph such that exactly one block H of G 

contains a cycle, then H is interlaced. Combining this observation with Corollary 1, 

we get the following result: 

Corol lary 2 . Let G be a connected, N2-/oca//y connected multigraph. If at most 

one block of G contains a cycle, then G is upper embeddable. 

Note tha t multigraph GQ in Fig. 3 is not upper embeddable. 

R e m a r k . The subject of the present note is not too far from the subject of the 

paper [10]. Nedela and Skoviera [10] proved that if G is a connected multigraph such 

that there exists a 2-cell embedding of G in a closed surface with the property tha t 

the length of no face is greater than 4, then G is upper embeddable. In June 1991, 

the author of the present note was informed by Nedela and Skoviera that if G is a 

graph (i.e. a multigraph with no parallel edges), then the result of [10] can be derived 

from Theorem C. 
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