Previous |  Up |  Next

Article

References:
[1] M. Anderson, T. Feil: Lattice-Ordered Groups (An Introduction). D. Riedel Publishing Company, 1988. MR 0937703
[2] S. J. Bernau: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631. MR 0182661
[3] P. Conrad: Lattice-Ordered Groups. Tulane Lecture Notes, Tulane University, 1970. Zbl 0258.06011
[4] M. Darnel: Closure operators on radical classes of lattice-ordered groups. Czech. Math. J. 37(112) (1987), 51–64. MR 0875127 | Zbl 0661.06007
[5] A. M. W. Glass, W. C. Holland: Lattice-Ordered Groups (Advances and Techniques). Kluwer Academic Publishers, 1989. MR 1036072
[6] W. C. Holland: Varieties of $\ell $-groups are torsion classes. Czech. Math. J. 29 (1979), 11–12. MR 0518135
[7] J. Jakubik: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21 (1977), Academic Press, 451–477. MR 0491397 | Zbl 0368.06013
[8] J. Jakubik: Products of radical classes of lattice ordered groups. Acta Mathematica Comenianae 39 (1980), 31–41. MR 0619260 | Zbl 0508.06019
[9] J. Jakubik: Radical subgroups of lattice ordered groups. Czech. Math J. 36(111) (1986), 285–297. MR 0831316 | Zbl 0605.06013
[10] G. O. Kenny: Lattice-Ordered Groups. Ph.D. dissertation, University of Kansas, 1975.
[11] J. Martinez: Torsion theory for lattice ordered groups. Czech. Math. J. 25(100) (1975), 284–299. MR 0389705 | Zbl 0321.06020
[12] J. Martinez: The fundamental theorem on torsion classes of lattice-ordered groups. Trans. Amer. Math. Soc. 259 (1980), 311–317. DOI 10.1090/S0002-9947-1980-0561839-7 | MR 0561839 | Zbl 0433.06016
[13] Dao-Rong Ton: The structure of a complete $\ell $-group.
Partner of
EuDML logo