[1] D. A. André, G. L. Mullen, and H. Niederreiter:
Figures of merit for digital multistep pseudorandom numbers. Math. Comp. 54 (1990), 737–748.
DOI 10.2307/2008509 |
MR 1011436
[2] M. Car:
Sommes de carrés dans $F_{q}[X]$. Dissertationes Math. 215 (1983).
MR 0718932
[7] L. K. Hua and Y. Wang:
Applications of Number Theory to Numerical Analysis. (1981), Springer, Berlin.
MR 0617192
[8] R. Lidl and H. Niederreiter:
Finite Fields. Addison-Wesley, Reading, MA, 1983.
MR 0746963
[9] G. L. Mullen and H. Niederreiter:
Optimal characteristic polynomials for digital multistep pseudorandom numbers. Computing 39 (1987), 155–163.
DOI 10.1007/BF02310104 |
MR 0919665
[13] H. Niederreiter:
Pseudozufallszahlen und die Theorie der Gleichverteilung. Sitzungsber. Osterr. Akad. Wiss. Math.-Naturwiss. Kl. Abt. II 195 (1986), 109–138.
MR 0881335 |
Zbl 0616.10040
[15] H. Niederreiter:
A statistical analysis of generalized feedback shift register pseudorandom number generators. SIAM J. Sci. Statist. Computing 8 (1987), 1035–1051.
DOI 10.1137/0908084 |
MR 0911073 |
Zbl 0634.65003
[17] H. Niederreiter:
Quasi-Monte Carlo methods for multidimensional numerical integration. Numerical Integration III (Oberwolfach 1987), Internat. Series of Numer. Math., Vol. 85, Birkhäuser, Basel, 1988, pp. 157–171.
MR 1021532 |
Zbl 0662.65021
[19] H. Niederreiter:
A combinatorial problem for vector spaces over finite fields. Discrete Math. (to appear).
MR 1139449 |
Zbl 0747.11063
[21] I. M. Sobol’:
The distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784–802. (Russian)
MR 0219238 |
Zbl 0185.41103
[22] S. Tezuka: A new family of low-discrepancy point sets, Tech.