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PRODUCT RADICAL CLASSES OF £-GROUPS
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(Received March 16, 1991)

The main results of this paper concern product radical classes of ¢-groups. We
discuss the product radical mappings and the polar closure operator in the complete
lattice T}/93/, and generalize some results for torsion classes.

We use the standard terminology and notation of [1, 3, 5]. Throughout the paper
G is an £-group. We use the additive group notation. Let {G, | « € A} be a family

of ¢-groups and let [] G4 be their direct product. For an element ¢ € [] G, we
a€EA a€A
denote the a-component of g by g,. An £-group G is said to be a subdirect product

of ¢-groups G, in symbols G C' [] G, if G is an £-subgroup of [] Gg such that
a€A a€A
for each o € A and each ¢’ € G, there exists g € G with the property g, = g’. We

denote the f-subgroup of [| G4 consisting of the elements with only finitely many
a€A

non-zero components by Y G,. It is called the direct sum of G,. An f-group G
agA

is said to be a completely subdirect product of G4, if G is an £-subgroup of [ Ga

and ) G, CG. ae4d
a€A
Let G be an f-group. C(G) will denote the complete lattice of all convex ¢-
subgroups of G. For g € G, let G(g) be the convex f-subgroup generated by g.
IfXCG, X3 = {fE G| forallz EX,|f|A|:cl=0} is called the polar of X in G.
If there is no danger of confusion, we simply write X*.

1. CLASSES OF ¢-GROUPS

We can form new £-groups from some original ¢-groups. These structure methods
include:
1. taking ¢-subgroups,
1’. taking convex £-subgroups,
2. forming joins of convex f-subgroups,
2'. forming finite joins and chain joins of convex ¢-subgroups,
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3. forming completely subdirect products,
3. forming direct products,
3”. forming direct sums,
4, taking {~homomorphic images,
4’. taking complete &-homomorphic images,
4", taking f-isomorphic images,
5. forming extensions, that is, G is an extension of A with respect to B if A is an
¢-ideal of G and B = G/A.
A family U of f-groups is called a class, if it is closed under some of the above
structures. If a class & is closed under the structures iy, io, i3, 4, 15, we call

iq € {4,4',4"}, is € {5,4"}. All our classes are always assumed to contain along
with a given £-group all its ¢-isomorphic copies, so we can omit the index 4”. For
example, we simply write the 1’2'-class for the 1'2/4”4""4"_class.

Thus, a radical class [7] is a 1’2-class, a torsion class [12] is a 24-class, a hereditary
torsion class [11] ia a 1’24-class, a torsion-free class [11] is a 1’3-class, a quasi-torsion
class [10] is a 1’24’-class, a complete torsion class [12] is a 245-class, a variety is a
134-class.

Let T;,ijijiis be the collection of all ijizi3isis-classes, It is clear that an
i) ...1k—12k-class is also an i;...4;_1-class (2 < k < b), that is, Tj, i, _,i, C
Ti\..ix-,- Wealso have T;, i, iy CTi, ap .45 (1 <k <H).

We could have at most 3-3-4-3-2 = 216 classes of ¢-groups, but some of them
coincide. For example, we will show that T;,i,i4i,is = Ti 20isi4is If 01 #4”. It is also
clear that T1;,3i,i, = T1i,3'i,is- In general, for 1'2i3i4i5-classes we have the following

relations:
Ti2s C Tizzr CTyragn =Tyg D Tiiog

Ul Ul ]} Ul ]|
Tyi235 C T1i23's C Tirazes = Tiras D Tirgas

A 1'2'3'-class is called a product radical class. A 1'2'3-class is called a subproduct
radical class. In this paper we mainly discuss the product radical classes. We will
prove that most of the results similar to those from [11] are valid for product radical
classes. First, we give some examples of product radical classes: )

‘H, the class of hyper-archimedean f-groups. An ¢-group belongs to H if and only
if every £-homomorphic image is archimedean.

Ar, the class of all archimedean ¢-groups. _

CD, the class of completely distributive ¢-groups. .

SP, the class of strongly projectable f-groups, that is, ¢-groups for which each
polar is a cardinal summand.

Bas, the class of all f-groups with a basis ( an ¢-group has a basis if it has a
maximal pairwise disjoint set of basic element).

C, the class of all complete £-groups.
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Since every variety of ¢-groups is a torsion class [6] and a torsion-free class, so
every variety is a product radical class. Let £ be the variety of all f-groups. A
product radical class R is called proper if R # L.

2. THE PRODUCT RADICAL MAPPINGS

Let R be a product radical class and G an £-group. By Zorn’s Lemma there exists a
maximal convex {-subgroups of G belonging to R. We denote it by R(G). Since R is
closed under finite joins, R(G) is the unique largest convex £-subgroup of G belonging
to R. R(G) is called a product radical of Gj it is invariant under all £-automorphisms
of G, and in particular it is an £-ideal. Let R(G) = {R(G) | R € Ty 13} [9].

We have the following elementary fact.

Theorem 2.1. Suppose that R is a product radical class. Then
(i) if A is a convex £-subgroup of G then R(A) = ANR(G);
(ii) if {Gr | A € A} is a family of £-groups then R( [ G») = [T R(G»).
AEA XEA
Conversely, if we associate with each {-group G an {-ideal U(G) subject to (i) and

(ii) above, and set R = {G | U(G) = G}, then R is a product radical class, and for
each £-group G, R(G) = U(G).

Proof. ANR(G) is a convex f-subgroup of R(G) and belongs to R, so AN
R(G) C R(A). R(A) is a convex {-subgroup of G and belongs to R, so R(A) C
ANR(G). Therefore R(A) = ANR(G).

Let {Gx|X € A} be a family of £-groups. Then

(1) R( II GA) 2 [T R@Gw).

AEA AEA

IR

On the other hand, let Gy = {g ETIGr|6# )= g5 = 0}, then Gy = G,.

AEA

We see that ’R,( IT GA) N G) is a convex f-subgroup of ”R,( 11 G)‘) and G, so
XEA XeA

’R,( 11 G,\) NGy C R(G>). Since R( 11 G’,\) is a convex {-subgroup of [] G,
A€EA AEA A€EA

R(};[AG,\)+ C AEHA-[R(AEHAGAY nc‘;A] C g\ [R(E\GA) nc‘;x].
Hence
(2) n(g\cx) C ;[;[A [R(E\Gx) nc‘:A] c E\R(G’A) = E\R(G,\).
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Combining (1) and (2) we get (ii).

Conversely, suppose the function i/ satisfies (i) and (i), and R{G |U(G) = G}. If
G € R and A is a convex f-subgroup of G, then U(A) = ANU(G) = ANG = A, hence
A € R. Next, suppose {CA | A€ A} is a family of convex £-subgroups of an ¢-group

G,C =V Cj, and C) € R for each A\. Then Cx =U(C)) = CANU(G) € C(U(G)),
A€EA

so \V Cx € C(U(G)). But U(U(G)) = U(G) implies U(G) € R. By the above we
A€EA

get \/ C € R. This implies that R is closed under the structure 2, in particular,
A€EA
R is closed under the structure 2’.

Suppose that {G,\ | A € A} is a family of ¢-groups, and G, € R for each A.
Then U( I1 G,\) = [l U(G)) = I] G», hence [] Gx» € R. Therefore R is
AEA A€EA X€EA

A€EA
a product radical class. U(G) € R implies U(G) C R(G). On the other hand,
R(G) = U(R(G)) = R(G) NU(G) CU(G). Hence R(G) = U(G). a

Any mapping G — U(G) on the variety £ of all £-groups satisfying the above
properties (i) and (ii) is called a product radical mapping. Thus there exists a 1-1
correspondence between the product radical classes and the product radical map-
pings. From the above proof we see that a product radical class is always closed
under forming joins of convex f-subgroups, by a product radical class we always
mean a 1’23'-class. In the general we have

Corollary 2.2. T;,2isi,is = Ti 2/isiais if 11 # 4”. In particular, T30 = Tyip3r.

Proposition 2.3. Suppose that R is a product radical class and {G,\ | A e A} is
a family of convex £-subgroups of the £-group G. Then

(1) R(A\E/AGA) = V R(G»),

A€EA
(2) ’R( N G,\) = N R(GY).
AEA A€EA

The proof of this proposition is similar to the proof of Proposition 1.1 and Propo-
sition 1.3 in [11].

3. THE COMPLETE LATTICE Ti/93/

Suppose {Ux | A € A} C Tz Since the intersection of a family of product
radical classes is also a product radical class, we can define

/\U,\= ﬂU,\,

A€EA A€EA
\/ uu ::rW{}l € 71@31'11 ;}L(\fbreach A EAA}.
AEA
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Theorem 3.1. Ty/y3: is a complete lattice. If {U,\ | A€ A} C Thiasr, {u,- |i=
1..., n} C Tjio31, then for each £-group G,

3) (Amym=ﬂm@
AEA AEA
and

() (imy®=0mmx

where V U;(G) is the convex £-subgroup generated by U;(G) (i = 1,...,n). Hence

Tyr93 1s a sublattice of 11/9 and the meets of Tyip3: agree which those of Ty:5.
Proof. The formula (3) is clear. We only prove (4). First, G — \/ U;i(G) is a
i=1
n
product radical mapping. In fact, V U(A) = V (ANU(G)) = AN(V Ui(G)) for
i=1

i=1

n
each A € C(G). For any family {G6 | 6§ € A} of £-groups, evidently [ V U:(Gs) 2

€A i=1
V I1U(Gs). a=(.a5..) € I VU(Gs), then for each § € A a5 =
i=15€A s€A i=1
as, +---+as,, a5, EUi(Gs) (1 <i<n). Soa=(...,a6,..)0+-+(..,as,...),
where (...,as,,...) € T] Ui(Gs) (1 < i< n). Hence a € \/ [] Ui(Gs). Therefore
sea i=15€A

n
[T V U(Gs) = V IT Ui(Gs). Thus, (i) and (ii) of Theorem 2.1 are satisfied
sea i=1 i=15€a

and V U;(G) defines a product radical class U = {G | G = \/ U (G)}. R

is a product radical class such so that ’R QU (1 <ign) and G € U, then

R(G) = (v Ui(G)) = _V R(U:(G)) = ‘V U;(G) = G and G € R. 1t follows that
n n i=1 n i=1

U=\ tand (VU)G) =V U(G). O
i=1 i= i=1

n

Note 1. From the formulas (3) and (4) we have T A ( V L() V (T AU).

Nonetheless, it is not generally true that Z( V ll,\) V (Z AU). So T1/23: is not
A€EA

a Brouwerian lattices. Nor is it generally true that Z Vv ( A IA) = A@VviUy). In
XeA XeA

general, TV ( A UA) C A@vuy).
AEA AEA
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Note 2. The general form of (4) is ( V U,\) (G) = V Uxr(G). 1t is valid for
AEA AEA

radical classes and torsion classes. Let {U,\ | A e A} be a family of 1/2¢31415-classes.
From the proof of Theorem 3.1 we know that ( V U)‘) (G) = V Uxr(G), if and only
A€EA AEA

if R = {G |G=YV u,\(G)} defines a 1'2igi4gi5-class if and only if Tjs9i,i,i, is a
A€EA
complete sublattice of T}/5. T}s23/ is not a complete sublatice of T}:o.

Note 3. By Theorem 3.1 we see that R(G) is a sublattice of C(G) for an ¢-
group G.

Since a product radical class is a radical class, for any two product radical classes
T and U we also have their product Z.U = {G | G/I(G) e U} [8].

Theorem 3.2. Z.U is a product radical class whenever T and U are; if G is an
£-group, the product radical T.U(G) is defined by the equation IT.U(G)/I(G) =
U(G/I(G)). Consequently, Ty123/ is a subsemigroup of Ty:s.

Proof. We will prove that Z.U(G) satisfies (i) and (ii) of Theorem 2.1. Suppose
that A is a convex £-subgroup of G. To show that Z.U(A) = ANT.U(G) we prove
that [ANZ.U(G)|/T(A) = U(A/Z(A)).

[ANT.U(G)]|/T(4) = [ANT.U(G)]/[ANI(G)]
= {(ANZ.U(G)) VI(G)|/I(G) = [AVI(G)|NI.U(G)/I(G)
= [AVI(G)/Z(G)] N [Z.U(G)/Z(G)]
= [AVI(G)/Z(G) nU(G/I(G)) =U(AVI(G))/I(G)
= U(A/ANI(G)) =U(A/I(A)).

Next, let {G A|AE A} be a family of ¢-groups. Then

[ Iz u(GA)] /z( I GA) [H 1. u(cx)] / [ I z(GA)]

A€EA A€EA A€EA AEA

=] [I.U(G)\)/I(G,\)] = [Ju4(Gr/Z(Gr))

AEA A€EA

~u( (CYECN )=u(I e/ T z6n)

A€EA A€EA

:11( I1 G,\/I(E\GA)> =I.U(g\g>‘)/l(n G,\).

A€EA A€EA

That is, I.U( I1 G,\) = [] Z.U(G»). Hence I.U(G) is a product radical. It is
AEA A€EA
clear that G € T.U if and only if Z.U(G) = G. So T.U is the product radical class

defined by Z.U(G). a
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Corollary 3.3. Suppose Z,U, U’ € Tyioz. IfU DU, then T.UDT.U'.

Theorem 3.4. Let U, {I) | A € A}, (. |i=1,..., n} be product radical
classes. Then

) u. (A/G\AI,\) = A U.T,

n A'E‘A
(@) VuLi=u (.-\=/11‘)'

Proof. (1) By Theorem 3.1 we have
A D) (G(©)

Uu. (G /UG =
(,\/E\A 1)©)/u(©) (m
= A IA(GU©G) = N\ [U-In(G)/U(G)]

A€EA A€EA
[ Au. IA(G)] Ju@G) = ( A u.z,\) (G) [u(G).
A€EA AEA
Hence U. (,\/\AIA) (G) = (A/\AU.I,\) (G) for any £-group G, and so U. (AAAIA) =
AU ) € €
€

(2) It follows from Theorem 3.1 that
[u. ( \j/z)] (G)/uG) = ( \/ I, ) (G/U(G))
= yz.. (G/u©)) = \_/ [u.7:G)/u(G)]

- v u.z.-(c;)] Ju(G) = (i/lu.z.-) ©)/u(©).

Therefore [U. (i\:/1 I,')] (G) = ( )(G) for any £-group G, and so U. (’\:/l ) =
‘\_"/lu.z,-. .
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4. THE POLAR CLOSURE OPERATOR

In this section we define some new product radical classes from the old ones by
taking closures of the product radicals. Suppose that R is a product radical class.
Let R+ = {G | R(G) = 0}. Clearly R* is also a product radical class. R* is called
the polar of R.

Theorem 4.1. For any product radical class R, R*(G) = R(G)*.

Proof. Weshow that G — R(G)?' is a product radical mapping. Let A € C(G).
Then R(A)* = (ANR(G)); = ANR(G)L. Let {Gx | A € A} be a family of £
L 1

. Then R G = R(G = R(G))§,. Th
groups en [ (AI;IA ,\)] 1 [AI;IA ( ,\)] o ,\I;IA (Gx)z, us
R(G)* defines a product radical class Z. It is obvious that 7 = R*. O

Let G be an f-group. By Proposition 1.2.6 of [1], R(G)' is the unique largest
convex £-subgroup for which R(G) N R(G)* = 0.

This and Theorem 3.1 imply that R+ is the unique largest product radical class for
which RAR' = 0. This complementation polar operator defines a Galois connection

which has the following properties: Let R and Z be product radical classes. Define
RLL = (RY)L. Then

(1) RCR*

(2) ifRCZ, then Rt DIt
(3) RlzR.LL.L;

(4) (RVI)* =R'AT.

(5)

From Theorem 4.1 in [4] we have

Corollary 4.2. The polar operator in Ty/23 agrees with that in Ty:2.

From the formula (5) and Lemma 1 in [2] we get

Proposition 4.3. The mapping R — R** is a closure operator in Ti123;
(l) RJ"L — (RJ..L)LL’.

(2) if R CZ, then R+ C T4,

3) (RNI)*Ht =Rt nTLt.

A product radical class R is said to be a polar product radical class if R = RLL.
Let T7,,,, be the set of all polar product radical classes. Then T%,,,, is a complete
Boolean algebra under inclusion, in which meets agree with those of Tj23: but joins
need not.

A product radical class 7 is called complete (or idempotent), if T € Ti123:5, that
is T.T = T. We now seek to give a more precise description of complete product
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radical classes. Let Z be a product radical class and o an ordinal number. We define
an ascending sequence 7,72, ..., I7, ... as follows:

Z.Z° ! if o is not a limit ordinal,
I =1{G 16 = U I°(G)} if o is a limit ordinal.
a<lo

We will show that Z? is a product radical class for each . In fact, using the
:ransfinite inclusion we can show that

Z.7°7}(G) if o is not a limit ordinal,
G—1%(G) =9 |J 1) if o is a limit ordinal

a<lo

are product radical mappings. It suffices to verify that G — |J Z*(G) are prod-
a<lo

uct radical mappings for limit numbers 0. For any A € C(G) we have I9(A4) =

UZI4) = U[AnI*(G)] =An[U I%G)] = ANI°(G). Let {Gx| X € A}

a<lo alo a<lo

be a family of £-groups. Then

I”(HG,\) = Uz“(HGA) = [172(G»)

A€EA a<lo AEA a<lo AEA
cII [ U I“(Gx)] =TIz,
A€EA ta<lo AEA

On the other hand, let a € [] [ U I"(G,\)], a=(...,ay,...), where ay € I**(G))
XeA La<o

for A€ A. Put Iox(G,) = {f € ] Z°*(Gx)| if N # A, for =0}. Then
A‘EA

Iu@Gy € [[ 76 ¢ U [T 226w

A'EA a<o A€EA
So
ae [[z2Gy) = [[7(@G) ¢ U [] 226w
AEA AEA a<lo A€EA
Therefore
I° ( II G,\) = [[ 2°(G»).
A€EA AEA
We define

I =UI".

Theorem 4.4. Let T be a product radical class. Then I* is a complete product
radical class. It is the smallest complete product radical class containing . Hence
T is complete if and only if T =T*.
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Proof. LetG bean f-group. For sufficiently large o (depending on G),Z7(G) =

I°*(G) = .... For such o, we define I*(G) = I°(G). Clearly G € I* if and only
if I*(G) = G. We will show that T*(G) satisfies (i) and (ii) of Theorem 2.1. For
A€C(G),I°(G)=1I°*(G) = ... implies I°(A) = ANTI?(G) = ANI*(G) =
It (A) =.... So I*(A) =TI°(A) = ANI?(G) = ANI*(G).

Let {G,\ | A€ A} be a family of ¢-groups. For sufficiently large o T "( II G,\) =

AEA
10+1( I G;\) = ... Hence [[ Z°(Gx) = [1 Z°**(Gy) = ..., and s0 I°(G)) =
AEA AEA AEA

I°*t1(G)) = ... for each X € A. It follows that
I ( II GA) =1° ( II GA> =[[ 776y = [ T°(G»).
A€A A€A A€A A€A

This proves that Z* is a product radical class.

By using the transfinite induction we can show that 7*.Z? = ZI* so Z* is complete.
If U is a complete product radical class containing Z then by another induction
approach we have Z9 C U for each ordinal ¢. Thus 7* C U as claimed. a

T* is called the completion of Z.
Similarly to Theorem 1.7 in [11] we have

Proposition 4.5. Let T be a product radical class, and let G be an £-group.
Then I*(G) C I(G)*t. Thatis, I* C I+,

Corollary 4.6. A polar product radical class is complete, that is, T},,5 C
T35 C Tyraar C Thra.

From Proposition 4.3 and Proposition 4.5 we also get

Corollary 4.7. For any product radical class I, (I*)*+ =71L.
Now we give a more precise description of the polar product radical class.

Propositon 4.8. Let R be a product radical class, then R+ = {G | R(C) # 0
for each convex ¢-subgroup C # 0 of G}.

Proof. R1(G) is the largest convex ¢-subgrup C of G such that R(C) = 0.
So RY(G) = 0 if and only if R(C) # 0 for each convex £-subgroup C # 0 of G. It
follows from Theorem 4.1 that G € R** if and only if R1(G) = 0, if and only if
R(C) # 0 for each convex £-subgroup C # 0 of G. a

The following theorem is a direct consequence of Proposition 4.8.

Theorem 4.9. Let R be a product radical class. Then the following assertions
are equivalent:
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(1) R is a polar product radical class.

(2) If R(C) # 0 for each convex {-subgroup C of G, then G € R.

(3) If for each 0 < z € G there exists an element 0 < y < nz (with a suitable
integer n) such that G(y) € R, then G € R.

Corollary 4.10. Let T and R be product radical classes and TNR = 0. Then
I**NRYY =0and I* NR* = 0.

Proof. SupposeZNR =0and0 # G € ItLNRLL. It follows from Proposition
4.8 that Z(C) # 0 for each convex £-subgroup C # 0 of G. In particular, Z(G) # 0.
ZI(G) € R+ implies R(Z(G)) # 0. Thus o # R(Z(G)) € I NR. This contradicts
INR = 0. Hence Z++NRLL = 0. It follows from Proposition 4.5 and Z++NR++ = 0
that Z* NR* = 0. ' a

From Proposition 4.4 in [4] and the above Proposition 3.2 and Corollary 4.2 we
get

Corollary 4.11. For any product radical class R, R+1 is complete.

This corollary is also a consequence of Proposition 4.3(1) and Corollary 4.6.
Similarly to Theorem 4.8 in [4] we have

Propositon 4.12. The mapping R — R*!l is a semigroup endomorphism
in Tllzal.

Corollary 4.13. T7,,,, is a subsemigroup of Ty3:.

5. 1’23-HOMOGENEOUS ¢-GROUPS

For a family X of f-groups we denote by R(X) the intersection of all Z € Tj:23
with X C Z. It is said to be the product radical class generated by X. The product
radical class generated by an ¢-group G is denoted by Rg. For a family X of £-groups

let J(X) be the joins G = \/ G, with G € XNC(G)(A € A). Let P(X) and C(X)
A€EA
denote the classes of £-groups which are products or convex f-subgroups, respectively,

of elements of X. Clearly J(X), P(X) and C(X) are the classes containing X and
belonging to T3, T3 and Ty, respectively.

Theorem 5.1. Suppose that X is any family of £-groups. Then R(X) = JCP(X)
provided CP(X) is closed under forming finite joins of convex £-subgroups.

Proof. It isclear that JCP(X) is closed under taking convex ¢-subgroups and
forming joins of convex f-subgroups. We proceed in the following two steps to show
that JCP(X) is closed under forming the direct products.
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(a) CP(X) is closed under forming the direct product. In fact, let {G, | @ €

A} C CP(X), that is G4 € C( 11 Ga,‘) (e € A) where G4, € X for each ay.
ar€EAqs

Then [] Ga €C( 1 ( I Gan))=C( II Gan):
a€A a€A ‘ar€A, ar€EAL
(b) Let {Ga, | ar € Ao} C CP(X) and G* = \/ Ga, where Go, € C(G*)
ax€Aq

(o € A). For each a € A put Gay,...05, = V Gou_- where ay, € Ao (1=1,...,n).

i=1
Let Hqo be the set of all £-groups of the form Ga,, ...ay, (@ € A). By the assumption
Ho C CP(X) and clearly Ho C C(G®). By (a), [[{Ha € Ha | @ € A} € CP(X).
It is also clear that each H{Ha €EHo|la€ A} is a convex {-subgroup of [] G°.

a€A
Then

(6) VII{Has € Ha |a € A} C ] G-
aEA
For any a = (...,@aq,...) € [[ G%, aq belongs to some Hy € Hy (o € A). Conse-
a€A
quently, @ = (..., aq,...) belongs to some [[{ Hy € Ho | @ € A}. Hence
(7) [T G*CVII{Ha € Ha | x € A}.

a€A

Combining (6) and (7) we get

[1 G*=VII{Hs € Ha |« € A}.

a€A

Therefore [[ G* € JCP(X).

agA
Thus JCP(X) is a product radical class containing X. It is obvious that JC P(X)
is the smallest product radical class containing X. a

In another paper we will determine the product radical classes generated by the
integer group Z and by the real group R using the structure theory of a complete
£-group [13] and Theorem 5.1. The main results are:

The following assertions are equivalent:

(1) G e Rz,

(2) G is an ideal subdirect product of Z,

(3) G is a complete £-group which has no continuous convex ¢-subgroup, and each
convex f-subgroup of G has a singular element.

The following assertions are equivalent:

(1) G € R,

(2) G is an ideal subdirect product of R,

(3) G is a complete £-group which has no continuous convex ¢-subgroup, and for
each convex f-subgroup of K of G we have |K| > Ry.

140



Proposition 5.2. Let G be an £-group. Then there exists a unique largest prod-
uct radical class R® such that R6(G) = 0.

Proof. Rg(G) = G implies R§(G) = [’R,c;(G)]'L = G = 0 by Theorem 4.1.
Suppose that T is a product radical class so that Z(G) = 0 and Z D R§. Then
(8) I DI 2 Rg
and T11(G) = (Z(G)*)* = 0. On the other hand, (I*1)1(G) = [T+1(G)]* =G,
that is G € It1+ and 111 D Rg. It follows from the formula (5) that

©) Th = (T4t C RS,

8) and (9) infer Z**+ = R} and Z = R}. Thus RE is the largest product radical
G G G

class RC such that R¢(G) = 0. a

Corollary 5.3. For any £-group G, R N"R¢g = 0.

Since R¢.RC(G)/R%(G) = R (G/RE(G)), that is RE.RE(G) = R¢(G) =0, so
RE is complete.

An f-group G is called 1'23’-homogeneous if for each product radical class Z, either
G € T or else I(G) = 0. If G is 1'23’-homogeneous, then RC is meet irreducible.
Conversely, let a proper product radical class R be meet irreducible. Let Y be its
cover. Select G € Y\ R. Put Gop = R(G)*. Then Go # 0 and R(Go) = 0 by
Theorem 4.1. If 7 is a product radical class with Z(Gq) # 0, then R VI # R by
the formula (4). Thus Y C RV T and Go = Y(G,) C R(Go) + Z(Go) = I(Go),
i.e. Go € I. Hence Gg is 1'23-homogeneous. Clearly R C RC°. If R # RC°,
then R C Y C RC. But Y(Go) = Go, which contradicts R%(Gp) = 0. Therefore
R = RC.

The above discussion yields the following result:

Theorem 5.4. A product radical class R is meet irreducible if and only if R = R®
for some 1'23'-homogeneous £-group G.

Corollary 5.5. Any meet irreducible product radical class is complete.

If G is 1'23'-homogeneous, then R¢ V Rg is the cover of R¢, and so R¢ is the
cover of Rg ARC = 0. Hence Rg is join irreducible. Conversely, if a product radical
class R is join irreducible, then since R = \/ R, we have R = R for some G
in R. Gen

Finally, we give a sufficient and necessary condition under which an ¢-group G is
1’23’-homogeneous.

Proposition 5.6. Let G be an £-group. Then R(G) is lattice isomorphic into the
interval [0, Rg] of the lattice T1/23:.

Proof. For each Gy € R(G), put ¢(G1) = Rg. It is easy to show that ¢ is a
lattice isomorphism from R(G) into [0, Rg]. 0
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Since G is 123’-homogeneous if and only if |R(G)| < 2, we get

Theorem 5.7. An {-group G is 1'23’-homogeneous if and only if R is an atom
Olelzgl.
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