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P R O D U C T RADICAL CLASSES OF ^-GROUPS 

DAO-RONG T O N , Nanjing 

(Received March 16, 1991) 

The main results of this paper concern product radical classes of ^-groups . We 

discuss the product radical mappings and the polar closure operator in the complete 

lattice Fi'23', and generalize some results for torsion classes. 

We use the s tandard terminology and notat ion of [1, 3, 5] . Throughout the paper 

G is an ^-group . We use the additive group notat ion . Let {Ga \ a G A} be a family 

of ^-groups and let [ j Ga be their direct product . For an element ^ E [ ] G a , we 
a£A a£A 

denote the a-component of g by ga. An ^-group G is said to be a subdirect product 

of ^-groups G a , in symbols C7C' [ ] G a , if G is an ^-subgroup of Yi Ga such tha t 
a£A a£A 

for each a £ A and each g' G Ga there exists g G G with the property ga = g'. We 

denote the ^-subgroup of Yl Ga consisting of the elements with only finitely many 
a£A 

non-zero components by JZ Ga. It is called the direct sum of Ga. An ^-group G 
a£A 

is said to be a completely subdirect product of G a , if G is an ^-subgroup of Y[ Ga 

and Y, Ga C G. °eA 

a£A 

Let G be an ^-group . C(G) will denote the complete lattice of all convex £-

subgroups of G. For g G G, let G(g) be the convex ^-subgroup generated by g. 

If X C G, X£ = {f G G | for all x G X, | / | A |x | = 0} is called the polar of X in G. 

If there is no danger of confusion, we simply write XL. 

1. C L A S S E S O F ^ - G R O U P S 

We can form new ^-groups from some original ^-groups. These s t ructure methods 

include: 

1. taking ^-subgroups, 

1'. taking convex ^-subgroups, 

2. forming joins of convex if-subgroups, 

2' . forming finite joins and chain joins of convex ^-subgroups, 
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3. forming completely subdirect products, 

3 ' . forming direct products, 

3" . forming direct sums, 

4. taking ^-homomorphic images, 

A'. taking complete ^-homomorphic images, 

A", taking ^-isomorphic images, 

5. forming extensions, tha t is, G is an extension of A with respect to B if A is an 

^-ideal of G and B = G/A. 

A family U of ^-groups is called a class, if it is closed under some of the above 

structures. If a class U is closed under the structures i i , 1*2, 13, i*, is , we call 

U an i i i2 i3 i4i5-class, where ix G { 1 , 1 ' , 4 " } , i2 G { 2 , 2 , , 4 , , } ) i 3 G { 3 , 3 , , 3 / , , 4 , , } ) 

2*4 G { 4 , 4 , , 4 , / } , 1*5 G { 5 , 4 " } . All our classes are always assumed to contain along 

with a given ^-group all its ^-isomorphic copies, so we can omit the index A". For 

example, we simply write the l '2'-class for the l ^ M ' ^ ' ^ ' - c l a s s . 

Thus , a radical class [7] is a 1'2-class, a torsion class [12] is a 24-class, a hereditary 

torsion class [11] ia a l ,24-class, a torsion-free class [11] is a 1'3-class, a quasi-torsion 

class [10] is a l ,24 ,-class, a complete torsion class [12] is a 245-class, a variety is a 

134-class. 

Let T ^ i a t W s be the collection of all i^V^^is -c lasses , It is clear tha t an 

ii . . .ijk_iijb-class is also an ii . . .ijt_i-class (2 ^ k ^ 5), tha t is, Til.„ik_1ik C 

T i ^ . i , . , . We also have I}-....,--,...,-5 C ^ . . . ^ . . . i , (1 ^ k ^ 5). 

We could have at most 3 - 3 - 4 - 3 - 2 = 216 classes of ^-groups, but some of them 

coincide. For example, we will show tha t Li^isi-iis = ^ii2'i3i4i5 if ii 7*- 4" . It is also 

clear tha t Fii23i4i5 = Fii23'i4i5. In general, for l /2i3i4i5-classes we have the following 

relations: 
Ti'23 Q -A'23' Q Ti'23" = T\*2 2 7V24 

Ul Ul Ul Ul Ul 

P1'235 Q Ti'23'5 Q 7V23"5 = ^1'25 2 ^i'245 

A l '2'3'-class is called a product radical class. A l /2 /3-class is called a subproduct 

radical class. In this paper we mainly discuss the product radical classes. We will 

prove tha t most of the results similar to those from [11] are valid for product radical 

classes. First, we give some examples of product radical classes: 

7i, the class of hyper-archimedean ^-groups. An ^-group belongs to Ii if and only 

if every ^-homomorphic image is archimedean. 

Ar, the class of all archimedean ^-groups. 

CV, the class of completely distributive ^-groups. # 

SV, the class of strongly projectable ^-groups, that is, ^-groups for which each 

polar is a cardinal summand. 

Bas, the class of all ^-groups with a basis ( an £-group has a basis if it has a 

maximal pairwise disjoint set of basic e lement). 

C, the class of all complete ^-groups. 
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Since every variety of ^-groups is a torsion class [6] and a torsion-free class, so 
every variety is a product radical class. Let C be the variety of all ^-groups. A 
product radical class 1Z is called proper if 1Z -̂  C. 

2. T H E PRODUCT RADICAL MAPPINGS 

Let 1Z be a product radical class and G an ^-group. By Zorn's Lemma there exists a 
maximal convex ^-subgroups of G belonging to 1Z. We denote it by 1Z(G). Since 1Z is 
closed under finite joins, 1Z(G) is the unique largest convex ^-subgroup of G belonging 
to 1Z. 1Z(G) is called a product radical of G; it is invariant under all ^-automorphisms 
of G, and in particular it is an ^-ideal. Let R(G) = {1Z(G) 11Z E TV2>3'} [9]. 

We have the following elementary fact. 

T h e o r e m 2 .1 . Suppose that 1Z is a product radical class. Then 
(i) if A is a convex i-subgroup ofG then 1Z(A) = AC\1Z(G); 

(ii) if {G\ | A e A} is a family of £-groups then iz( Yl G\) = Yl 1Z(G\). 
V A € A J A€A 

ConverselyJ if we associate with each t-group G an t-idealU(G) subject to (i) and 
(ii) above, and set 1Z = {G \ U(G) = G} , then 1Z is a product radical class, and for 
each t-group G, 1Z(G) =U(G). 

P r o o f . AD 1Z(G) is a convex ^-subgroup of 1Z(G) and belongs to 1Z, so A C\ 
1Z(G) C 1Z(A). 1Z(A) is a convex ^-subgroup of G and belongs to 1Z, so 1Z(A) C 
A H 1Z(G). Therefore 1Z(A) = A H1Z(G). 

Let {G\ I A G A} be a family of ^-groups. Then 

(i) ^(n^^n^^)-
^ A € A ' A€A 

On the other hand, let G\ = {g e Yl G\ \ 6 £ A => gs = o ) , then G\ =* G\. 
1 A€A J 

We see that 1Z[ Yl G\) C\G\ is a convex ^-subgroup of 1Z[ Y\ G\) and GA, so 
V A € A ' V A € A ' 

ft( 11 G\) C)G\C 1Z(G\). Since 1z( Yl G A ) is a convex ^-subgroup of Yl GA, 

^(nG0+gnt^(nG0+n5Algnh(n^)no; 
V A € A 7 A€A L V A € A y J A€A L V A€A 7 J 

Hence 

(2) n( n GX) c n [*-( n °*) n^l -- n ^ ) = n ^(^). 
^ A € A ' AgA - ^ A g A ' - A€A AgA 
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Combining (1) and (2) we get (ii). 
Conversely, suppose the function U satisfies (i) and (ii), and 7l{G | U(G) = G}. If 

G ElZ and A is a convex if-subgroup of G, then U(A) = Af)U(G) = AC\G = A, hence 
A En. Next, suppose {C\ | A £ A} is a family of convex if-subgroups of an ^-group 
G, C = V Cx, and C\ £ n for each A. Then C\ = U(C\) = C\ C\U(G) £ C(U(G)), 

A€A 

so V C\ £ C(U(G)). But U(U(G)) = U(G) implies U(G) £ n. By the above we 
A€A 

get V C\ £n. This implies that n is closed under the structure 2, in particular, 
A€A 

n is closed under the structure 2'. 
Suppose that {G\ | A £ A} is a family of ^-groups, and G\ £ n for each A. 

Then U(Y[G\)=U U(G\) = FI ^A , hence U G\ £ n. Therefore n is 
V A € A ' A€A A€A A€A 

a product radical class. U(G) £ n implies U(G) C n(G). On the other hand, 
n(G) = U(n(G)) = n(G)dU(G) C U(G). Hence n(G) = U(G). D 

Any mapping G —• U(G) on the variety C of all ^-groups satisfying the above 
properties (i) and (ii) is called a product radical mapping. Thus there exists a 1-1 
correspondence between the product radical classes and the product radical map­
pings. From the above proof we see that a product radical class is always closed 
under forming joins of convex if-subgroups, by a product radical class we always 
mean a l^S'-class. In the general we have 

Corol lary 2.2. Til2i5i4i5 = Til2>i^4is ifh # 4". In particular, TV2.3, = TV23>. 

Propos i t ion 2.3. Suppose that n is a product radical class and {G\ \ A £ A} is 

a family of convex i-subgroups of the l-group G. Then 

(1)H( V Gx)= \/ K(Gx), 
V A € A ' A€A 

(2)fc(fl Gx)= f\K(Gx). 
V A € A 7 A€A 

The proof of this proposition is similar to the proof of Proposition 1.1 and Propo­
sition 1.3 in [11], 

3. T H E COMPLETE LATTICE TV23> 

Suppose {U\ | A £ A} C Ti'237- Since the intersection of a family of product 
radical classes is also a product radical class, we can define 

A!A=n^. 
A€A A€A 

\J U\ = f]{U £ TV23, | U D U\ for each A £ A}. 

A€A 
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T h e o r e m 3 . 1 . T1/23' is a complete lattice. If {U\ \ A G A} C Ti/23', {Ui \ i = 

1, . . . , n} C Ti/23', then for each i-group G, 

(3) f^Ux)(G)=f]Ux(G) 
^ A € A ' A€A 

and 

(4) (Vu,)(G) = Vu,(o), 
M = l ' *=1 

n 
where \J Ui(G) is the convex i-subgroup generated by U%(G) (i = 1, . . . , n). Hence 

»'=i 
7\/23' is a sublattice of7\>2 and the meets of 7\/23' agree which those ofT\>2. 

n 
P r o o f . The formula (3) is clear. We only prove (4). First, G —» V Ui(G) is a 

» = i 

product radical mapping . In fact, \J U{(A) = \J (Af]Ui(G)) = Af](\/ Ui(G)) for 
» = i » = i « = i 

each A G C(G). For any family {Gb \ 6 G A } of ^-groups, evidently f ] V Ui(G6) 3 
5 € A » = 1 

V II Ui(G6). If a = (...,a6,...) G n V Ui(G6)> then for each 6 G A a6 = 
*' = 1 <*€A ^€A*' = 1 

a6l + r-a<5n, a6i £Ui(G6) (1 ^ i ^ n). So a = ( . . . , a * . , . . . ) + h (. • . , a6n,...), 

where ( . . . ,a6t)...) G I I W,-(G«) (1 ^ i ^ n). Hence a G V EI U{(G6). Therefore 
6£A * = 1 6 € A 

f l V Ui(G6) = V EI W,-(G,5). Thus, (i) and (ii) of Theorem 2.1 are satisfied 
<5€A*' = 1 *' = 1 6 € A 

and \ / #-(<7) defines a product radical class U = {G | G = \ / ^ « ( ^ ) } - I f ^ 
*=i * = i 

is a product radical class such so tha t 7Z D Ux; (1 ^ i -̂  n) and G € U, then 

7^(G) = / ? ( V W,-(G)) = V K(Ui(G)) = V ^»(G) = G and G G K. It follows tha t f 

* = i * = i *= i 

U = V % and ( V W,-)(G) = V %(G). D 
*=i S = i ' *=i 

/ n x n 

N o t e 1. From the formulas (3) and (4) we have 1 A ( V Ui) = V (-1 A w - ) -
v » = i ' * = i 

Nonetheless, it is not generally true tha t X[ \J U\) = V (1 AU\). So Ti/23' is not 
V A € A ' A€A 

a Brouwerian lattices . Nor is it generally true tha t X V ( f\ U\) = f\ (X \/U\). In 
V A € A ' A€A 

general, T V ( A U\) C /\ ( l V t f A ) . 
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N o t e 2. The general form of (4) is f V W A ) ( G ) = V U\(G). It is valid for 
V A € A ' A€A 

radical classes and torsion classes. Let {U\ | A E A} be a family of l^i^i^-classes. 

From the proof of Theorem 3.1 we know that ( V U\)(G) = V U\(G), if and only 
V A € A ' A€A 

if H = {G | G = V ^ A ( G ) } defines a V2i3«4»5-class if and only if Ti/2,3,4,5 is a 
A€A 

complete sublattice of T\>2. Ti/23' is not a complete sublatice of T1/2. 

N o t e 3 . By Theorem 3.1 we see that R(G) is a sublattice of C(G) for an £-
group G. 

Since a product radical class is a radical class, for any two product radical classes 
1 and U we also have their product 1.U ={G\ G/1(G) eU} [8], 

Theorem 3.2. l.U is a product radical class whenever 1 and U are; if G is an 
i-group, the product radical l.U(G) is defined by the equation l.U(G)/l(G) = 
U(G/1(G)). Consequently, Ti'23' is a subsemigroup ofT\i2. 

P r o o f . We will prove that l.U(G) satisfies (i) and (ii) of Theorem 2.1. Suppose 
that A is a convex ^-subgroup of G. To show that l.U (A) = A ni.U(G) we prove 
that [A nl.U(G)]/l(A) = U(A/1(A)). 

[Ani. U(G)] /1(A) = [A n 1. U(G)] /[An 1(G)] 

9. [(Anl.U(G)) V 1(G)]/1(G) = [AVl(G)]m.U(G)/l(G) 

= [A V 1(G)/1(G)] n [l.U(G)/l(G)] 

= [AV1(G)/1(G)] nU(G/l(G))=U(AVl(G))/l(G) 

9_ U (A IA n 1(G)) = U (A/1(A)). 

Next, let {G\ | A £ A} be a family of ̂ -groups. Then 

Y[I.U(GX)\/IЫGX) = [ п ^ ^ / f п а д o 
AЄЛ J ^AЄЛ ' -ЛЄЛ J L AЄЛ 

= П \lҖGx)/l(Gx)] = Пu(oл/I(oл)) 
A€Л L •* A€Л 

= u(Ц(Gx/l(Gx))) =u(Ц Gx/Цl(Gx)) 
^ A € Л ' ^ A € Л A€Л ' 

= u(ЦGx/l(UGX))=lм(l[9,)/l(l[GX 
A€A X A€A / x X A€A ' x A e A 

That is, l.U( J] G\) = f l I.U{G\). Hence l.U(G) is a product radical. It is 
V A € A ' A€A 

clear that G € l.U if and only iil.U(G) = G. So l.U is the product radical class 
defined by 1. U(G). D 
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Corollary 3.3. Suppose 1, U, W <E TV23». IfU D W, then l.UD l.W. 

Theorem 3.4. Let U, {X\ | A £ A}, {Z,- | t = l , . . . , n } be product radical 
classes. Then 

( i ) u . ( A I A ) = AU.IX, 

(2) \]U.li=U.(\Jl%). 
i = l x t = l ' 

P r o o f . (1) By Theorem 3.1 we have 

U.( A ZA) (o)/u(o) = ( A -*) (GMG)) 

= /\1X(G/U(G))= /\[U.1X(G)/U(G)] 
A€A A€A 

= A U- ̂ (G)] /U(G) =(/\U.lx) (G)/u(G). 
LA€A J VA€A ' 

Hence u. ( A ^ A ) ( G ) = ( A U.1X)(G) for any ^-group G, and so u. ( A ZA) = 
VA€A ' VA6A ' VA€A ' 

A W.JA-
AeA 

(2) It follows from Theorem 3.1 that 

[u. ( V li)] (G)/U(G) = ( \/*.) (G/U(G)) 

= \Jli(G/U(G)) = \J[U.li(G)/U(G)) 
1 = 1 1 = 1 

= [\/u.J,(G)]/u(G)= (Vu.I,)(G)/u(G). 

Therefore [u. ( \J I.)] (G) = ( \) u-^i) (o) for any ̂ -group G, and so U. ( V *) = 

Vu-Ii- • 
i = l 
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4 . T H E POLAR CLOSURE OPERATOR 

In this section we define some new product radical classes from the old ones by 
taking closures of the product radicals. Suppose that n is a product radical class. 
Let nL = {G | n(G) = 0}. Clearly nL is also a product radical class. nL is called 
the polar of n. 

Theorem 4 .1 . For any product radical class n, nL(G) = n(G)L. 

P r o o f . We show that G —*• n(G)L is a product radical mapping. Let A G C(G). 

Then n(A)L = (Ann(G))A = A0n(G)L. Let {Gx \ A G A} be a family of £-

groups. Then \n( ft GX)]L = \ U ^(Gx)}^ ^ = ! !*(<?*)£*• Thus 
1 V A £ A ' J I I GA -A€A J -I GA A€A 

n(G)L defines a product radical class 1. It is obvious that 1 = nL. • 

Let G be an ^-group. By Proposition 1.2.6 of [1], n(G)L is the unique largest 
convex ^-subgroup for which n(G)nn(G)L = 0. 

This and Theorem 3.1 imply that nL is the unique largest product radical class for 
which n/\nL = 0. This complementation polar operator defines a Galois connection 
which has the following properties: Let n and 1 be product radical classes. Define 
nLL =(nL)L. Then 

( 5 ) /oч •ol _ 7?X1X. 

(i) ncnLL; 

(2) i f £ C J , then nL D1L; 

(3) nL = n1 

(4) (nvi)L =nLML. 

From Theorem 4.1 in [4] we have 

Corol lary 4.2. The polar operator in Fi'23' agrees with that in Ti>2-

From the formula (5) and Lemma 1 in [2] we get 

Propos i t ion 4.3. The mapping n —• nLL is a closure operator in Fi'237/ 
(i)nLL = (nLL)LL

; 

(2) ifn C 2, ^nen Te11 C J 1 1 ; 
(3)(7eni)-L 1 = / ^ 1 1 n i 1 1 . 

A product radical class n is said to be a polar product radical class if n = nLL. 
Let Ff/23/ be the set of all polar product radical classes. Then T^,23, is a complete 
Boolean algebra under inclusion, in which meets agree with those of Ti/23; but joins 
need not. 

A product radical class 1 is called complete (or idempotent), if 1 G Pi'23'5? that 
is 1.1 = 1. We now seek to give a more precise description of complete product 
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radical classes. Let 2" be a product radical class and a an ordinal number. We define 
an ascending sequence J , X2, . . . , Xa, ... as follows: 

{ X.Xa~l if cr is not a limit ordinal, 
{G | G = | J Xa(G)} if <7 is a limit ordinal. 

a<<r 

We will show that Xa is a product radical class for each a. In fact, using the 
iransfinite inclusion we can show that 

{ X.Xa~l(G) if a is not a limit ordinal, 
U Xa(G) if (T is a limit ordinal 

a<<r 

are product radical mappings. It suffices to verify that G —• (J Xa(G) are prod-
a<<r 

uct radical mappings for limit numbers cr. For any A G C(G) we have Xa(A) = 
|J Xa(A) = (J [A n Xa(G)] = A fl [ |J Ja(G)] = -4nr (G) . Let {GA I A G A} 

a<<r a<<r a<<r 

be a family of ̂ -groups. Then 

i<7(n^) = u j a (n^) = u iiia(G>) 
V A € A ' <*<<T V A € A ' ot<o\£A 

c nfu^^^n1'^)-
A€A *-a<<r -I A€A 

On the other hand, let a € I ] [ U IQ(G*)]» a = ( • • • » a A , • • •)» w h e r e a * € I 0 , A (G ? A) 
A€A La<<r J 

for A G A. Put Z * * ( G A ) = {/ € U lQx(Gx>) \ if A' # A, /A, = 0}. Then 
A'€A 

i°>(GX) c n^ (GA0c u nja(GA). 
A'€A a<<rA€A 

So 

Therefore 

a Є П íÖX(Gл) = П îвx(Gл) Ç (J П ^ ( ^ ) -
AЄЛ A€Л a<<тA€Л 

V A € A ' A€A 

(Gл). 

We define 

1* =(Jj". 
<T 

T h e o r e m 4.4. Let X be a product radical class. Then X* is a complete product 
radical class. It is the smallest complete product radical class containing X. Hence 
X is complete if and only ifX = X*. 
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P r o o f . Let G be an -?-group. For sufficiently large a (depending on G), la(G) = 
l°+l(G) = .... For such a, we define 1*(G) = 1°(G). Clearly G G 1* if and only 
if 1*(G) = G. We will show that 1*(G) satisfies (i) and (ii) of Theorem 2.1. For 
A G C(G), la(G) = l*+l(G) = ... implies 1°(A) = Anla(G) = Anl*+l(G) = 
l°+l(A) = .... So 1*(A) = 1°(A) = Ani°(G) = An 1*(G). 

Let {G\ I A G A} be a family of -f-groups. For sufficiently large a la ( fj G A ) = 

** + 1 ( II GA) = .... Hence n **(GA) = 11 - ^ + 1 ( G A ) = • • •> and so I ' (GA) = 
VA6A ' A6A A€A 

la+l(G\) = . . . for each A G A. It follows that 

r ( n G0= j* ( n G 0 = n j* (G*)=n r (<**)• 
^A€A ' ^A€A ' A€A AeA 

This proves that I* is a product radical class. 
By using the transfinite induction we can show that I* .1° = I* , so I* is complete. 

If U is a complete product radical class containing I then by another induction 
approach we have 1° CW for each ordinal a. Thus I* C U as claimed. • 

I* is called the completion of I . 
Similarly to Theorem 1.7 in [11] we have 

Proposition 4.5. Let 1 be a product radical class, and let G be an t-group. 
Then 1*(G) C 1(G)LL. That is, 1* C 1LL. 

Corollary 4.6. A polar product radical class is complete, that is, T^,23, C 
-Tl'23'5 C Ti'23' C -Ii'2-

From Proposition 4.3 and Proposition 4.5 we also get 

Corollary 4.7. For any product radical class 1, (1*)LL = 1LL. 

Now we give a more precise description of the polar product radical class. 

P ropos i ton 4.8. Let n be a product radical class, then nLL = {G \ n(C) ^ 0 
for each convex ^-subgroup C ^ 0 of G). 

P r o o f . nL(G) is the largest convex ^-subgrup C of G such that n(C) = 0. 
So nL(G) = 0 if and only if n(C) £ 0 for each convex ^-subgroup C ^ 0 of G. It 
follows from Theorem 4.1 that G G nLL if and only if nL(G) = 0, if and only if 
n(C) ^ 0 for each convex ^-subgroup C 9- 0 of G. • 

The following theorem is a direct consequence of Proposition 4.8. 

Theorem 4.9. Let n be a product radical class. Then the following assertions 
are equivalent: 
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(1) n is a polar product radical class. 
(2) Ifn(C) ^ 0 for each convex i-subgroup C ofG} then G en. 
(3) If for each 0 < x G G there exists an element 0 < y ^ nx (with a suitable 

integer n) such that G(y) G n, then Gen. 

Corollary 4.10. Let X and n be product radical classes and X n n = 0. Then 
xLL nnLL = o andx* nn* = o. 

P r o o f . Suppose Xnn = 0 and 0 ?- G G XLLnnLL. It follows from Proposition 
4.8 that X(C) / 0 for each convex -f-subgroup C^OofG. In particular, X(G) ^ 0. 
X(G) G nLL implies n(X(G)) ^ 0. Thus o ^ n(X(G)) eXnn. This contradicts 
Xnn = 0. Hence XLLnnLL = 0. It follows from Proposition 4.5 and XLLnnLL = 0 
that x* n n* = 0. • 

From Proposition 4.4 in [4] and the above Proposition 3.2 and Corollary 4.2 we 
get 

Corollary 4.11. For any product radical class n, nLL is complete. 

This corollary is also a consequence of Proposition 4.3(1) and Corollary 4.6. 
Similarly to Theorem 4.8 in [4] we have 

Propositon 4.12. The mapping n —• nLL is a semigroup endomorphism 
in Ti'23' • 

Corollary 4.13. T^,23, is a subsemigroup ofTi*23'. 

5. l'23'-HOMOGENEOUS i?-GROUPS 

For a family X of if-groups we denote by n(X) the intersection of all X G --V23' 
with X C X. It is said to be the product radical class generated by X. The product 
radical class generated by an -?-group G is denoted by 7£G . For a family X of -?-groups 
let J(X) be the joins G = V Gx with Gx G X nC(G)(\ G A). Let P(X) and C(X) 

denote the classes of ^-groups which are products or convex -^-subgroups, respectively, 
of elements of X. Clearly J(K), P(X) and C(X) are the classes containing X and 
belonging to T2, T3/ and Ti/, respectively. 

Theorem 5.1. Suppose that X is any family of i-groups. Then n(X) = JCP(X) 
provided CP(X) is closed under forming finite joins of convex t-subgroups. 

P r o o f . It is clear that JCP(X) is closed under taking convex if-subgroups and 
forming joins of convex ^-subgroups. We proceed in the following two steps to show 
that JCP(X) is closed under forming the direct products. 
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(a) CP(X) is closed under forming the direct product. In fact, let {Ga \ a e 

A} C CP(X), that is Ga e C( Y\ Gax) (a e A) where GaA G X for each a A . 

Then UGaec(u ( II Gax))=c( U Gax). 
a£A x a€-4 V a A € A a

 7 / X a A € A a ' 
(b) Let {Gax \ ax e Aa} C CP(X) and Ga = \J Gax where GaA G C(Ga) 

a A €A a 
n 

( a G -4). For each a e A put G a A ...aAn = V Gax where a\i G A a (i = 1 , . . . , n ) . 
t = i 

Let W a be the set of all ^-groups of the form Gax ...aAn (« £ -4). By the assumption 
Ha C CP(X) and clearly Ha C C ( G a ) . By ( a ^ n j H a G fta | a G -4} G C P ( X ) . 
It is also clear tha t each f l { ^ a G Ha \ a e A] is a convex ^-subgroup of J~[ G a . 

a£A 
Then 

(6) Vn{^aGWa |aG-4}C fl Ga. 
a£A 

For any a = (..., a a , . . . ) G f l Ga, aa belongs to some Ha G Ha (a G A). Conse-
a€A 

quently, a = ( . . . , a a , . . . ) belongs to some n { ^ a G W a | a G -4} . Hence 

(7) n G-C\/n{^aGW a |aGA} . 
a£A 

Combining (6) and (7) we get 

n Ga = \/Y[{Haena \aeA}. 

aeA 

Therefore f ] G<x G JCP(X). 
a€A 

Thus JCP(X) is a product radical class containing X. It is obvious tha t JCP(X) 

is the smallest product radical class containing X. • 

In another paper we will determine the product radical classes generated by the 

integer group Z and by the real group R using the structure theory of a complete 

^-group [13] and Theorem 5.1. The main results are: 
The following assertions are equivalent: 
( l ) C G K z , 
(2) G is an ideal subdirect product of zT, 
(3) G is a complete ^-group which has no continuous convex ^-subgroup, and each 

convex ^-subgroup of G has a singular element. 
The following assertions are equivalent: 
( l ) G e R R , 
(2) G is an ideal subdirect product of It, 

(3) G is a complete ^-group which has no continuous convex ^-subgroup, and for 

each convex ^-subgroup of K of G we have \K\ > No-
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Propos i t ion 5.2. Let G be an £-group. Then there exists a unique largest prod­
uct radical class nG such that nG(G) = 0. 

P r o o f . nG(G) = G implies ft£(G) = [nG(G)]L = GL = 0 by Theorem 4.1. 
Suppose that J is a product radical class so that 1(G) = 0 and 1 D ft£. Then 

(8) 1LLD1D ft£ 

and 1LL(G) = (1(G)L)L = 0. On the other hand, (1LL)L(G) = [lLL(G)]L = G, 
that is G G 1LLL and 1LLL D nG. It follows from the formula (5) that 

(9) iLL = (iLLL)Lcn£. 
(8) and (9) infer 1LL = n^ and Z = ft£. Thus ft£ is the largest product radical 
class nG such that nG(G) = 0. D 

Corol lary 5.3. For any £-group G, nG D nG = 0. 

Since nG.nG(G)/nG(G) = nG(G/nG(G)), that is nG.nG(G) = nG(G) = o, so 
nG is complete. 

An ^-group G is called l'23'-homogeneous if for each product radical class J , either 
G G 1 or else 1(G) = 0. If G is l'23'-homogeneous, then nG is meet irreducible. 
Conversely, let a proper product radical class n be meet irreducible. Let y be its 
cover. Select G £ y \ n . Put G0 = n(G)L. Then G0 ^ 0 and n(G0) = 0 by 
Theorem 4,1. If 1 is a product radical class with 1(G0) ^ 0, then n V J ^ n by 
the formula (4). Thus ^ C ft V 1 and G0 = .y(Gc) C ft(G0) +1 (Go) = I (G 0 ) , 
i.e. Go G 2 . Hence G0 is l'23'-homogeneous. Clearly n C ftGo. If ft ^ ftG°, 
then ft C y C nGo. But 3^(Go) = G0, which contradicts nG°(G0) = 0. Therefore 

ft = nGo. 
The above discussion yields the following result: 

T h e o r e m 5.4. A product radical class ft is meet irreducible if and only ifn = ftG 

for some V'23'-homogeneous £-group G. 

Corollary 5.5. Any meet irreducible product radical class is complete. 

If G is l'23'-homogeneous, then ftG VftG is the cover of ftG, and so nG is the 
cover of fto AftG = 0. Hence nG is join irreducible. Conversely, if a product radical 
class ft is join irreducible, then since ft = V ft<sr, we have ft = ft<9 for some G 

in ft. 
Finally, we give a sufficient and necessary condition under which an ^-group G is 

l'23'-homogeneous. 

Propos i t ion 5.6. Let G be an £-group. Then R(G) is lattice isomorphic into the 
interval [0,ftG] of the lattice T\'23'-

P r o o f . For each G\ G R(G), put <p(Gi) = nG. It is easy to show that <p is a 
lattice isomorphism from R(G) into [0,ftG]- n 
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Since G is l^ ' -homogeneous if and only if | i?(G)| ^ 2, we get 

T h e o r e m 5.7. An £-group G is 1'23'-homogeneous if and only iflZo is an atom 

of F1'23' • 
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