[1] M. Anderson and T. Feil:
Lattice-Ordered Groups (An Introduction). D. Reidel, Dordrecht, 1988.
MR 0937703
[2] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis:
Cancellative residuated lattices. Algebra Univers. 50 (2003), 83–106.
MR 2026830
[3] A. Bigard, K. Keimel and S. Wolfenstein:
Groupes et Anneaux Réticulés. Springer, Berlin, 1977.
MR 0552653
[4] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[6] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1861369
[10] A. Dvurečenskij and T. Vetterlein:
Generalized pseudo-effect algebras. In: Lectures on Soft Computing and Fuzzy Logic (A. Di Nola, G. Gerla, eds.), Springer, Berlin, 2001, pp. 89–111.
MR 1865061
[12] G. Georgescu and A. Iorgulescu:
Pseudo-MV algebras. Mult.-Valued Log. 6 (2001), 95–135.
MR 1817439
[13] G. Georgescu, L. Leuştean and V. Preoteasa:
Pseudo-hoops. J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184.
MR 2162590
[16] A. Iorgulescu:
Classes of pseudo-BCK(pP) lattices. Preprint.
MR 2648142
[17] P. Jipsen and C. Tsinakis:
A survey of residuated lattices. In: Ordered Algebraic Structures (J. Martines, ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56.
MR 2083033
[19] J. Kühr:
Finite-valued dually residuated lattice-ordered monoids. Math. Slovaca 56 (2006), 397–408.
MR 2267761
[20] J. Kühr:
On a generalization of pseudo MV-algebras. J. Mult.-Val. Log. Soft Comput 12 (2006), 373–389.
MR 2288689
[21] T. Kovář: General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. thesis, Palacký Univ., Olomouc, 1996.