Previous |  Up |  Next

Article

Keywords:
partial monounary algebra; ideal; congruence; quotient algebra; ideal extension
Summary:
In the present paper we introduce the notion of an ideal of a partial monounary algebra. Further, for an ideal $(I,f_I)$ of a partial monounary algebra $(A,f_A)$ we define the quotient partial monounary algebra $(A,f_A)/(I,f_I)$. Let $(X,f_X)$, $(Y,f_Y)$ be partial monounary algebras. We describe all partial monounary algebras $(P,f_P)$ such that $(X,f_X)$ is an ideal of $(P,f_P)$ and $(P,f_P)/(X,f_X)$ is isomorphic to $(Y,f_Y)$.
References:
[1] A. H. Clifford: Extensions of semigroups. Trans. Am. Math. Soc. 68 (1950), 165–173. DOI 10.1090/S0002-9947-1950-0033836-2 | MR 0033836 | Zbl 0037.01001
[2] A J. Hulin: Extensions of ordered semigroups. Czech. Math.  J. 26(101) (1976), 1–12. MR 0392740 | Zbl 0339.06010
[3] D. Jakubíková-Studenovská: Subalgebra extensions of partial monounary algebras. Czech. Math.  J. 56(131) (2006), 845–855. DOI 10.1007/s10587-006-0060-2 | MR 2261657
[4] B. Jónsson: Topics in Universal Algebra. Springer, Berlin-Heidelberg-New York, 1972. MR 0345895
[5] N. Kehayopulu, P.  Kiriakuli: The ideal extension of lattices. Simon Stevin 64 (1990), 51–60. MR 1072483
[6] N. Kehayopulu, M. Tsingelis: The ideal extensions of ordered semigroups. Commun. Algebra 31 (2003), 4939–4969. DOI 10.1081/AGB-120023141 | MR 1998037
[7] J. Martinez: Torsion theory of lattice ordered groups. Czech. Math.  J. 25(100) (1975), 284–299. MR 0389705
[8] M. Novotný: Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math., Brno 26 (1990), 155–164. MR 1188275
Partner of
EuDML logo