Article
Keywords:
partial monounary algebra; ideal; congruence; quotient algebra; ideal extension
Summary:
In the present paper we introduce the notion of an ideal of a partial monounary algebra. Further, for an ideal $(I,f_I)$ of a partial monounary algebra $(A,f_A)$ we define the quotient partial monounary algebra $(A,f_A)/(I,f_I)$. Let $(X,f_X)$, $(Y,f_Y)$ be partial monounary algebras. We describe all partial monounary algebras $(P,f_P)$ such that $(X,f_X)$ is an ideal of $(P,f_P)$ and $(P,f_P)/(X,f_X)$ is isomorphic to $(Y,f_Y)$.
References:
[4] B. Jónsson:
Topics in Universal Algebra. Springer, Berlin-Heidelberg-New York, 1972.
MR 0345895
[5] N. Kehayopulu, P. Kiriakuli:
The ideal extension of lattices. Simon Stevin 64 (1990), 51–60.
MR 1072483
[7] J. Martinez:
Torsion theory of lattice ordered groups. Czech. Math. J. 25(100) (1975), 284–299.
MR 0389705
[8] M. Novotný:
Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math., Brno 26 (1990), 155–164.
MR 1188275