Article
Keywords:
prime ring; derivation; extended centroid; martindale quotient ring
Summary:
Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.
References:
[5] N. Jacobson:
PI-algebras, an Introduction. Lecture notes in Math., 441, Springer Verlag, New York, 1975.
MR 0369421 |
Zbl 0326.16013
[6] N. Jacobson:
Structure of Rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
MR 0222106