Previous |  Up |  Next

Article

Keywords:
prime ring; derivation; extended centroid; martindale quotient ring
Summary:
Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.
References:
[1] J. Bergen, I. N. Herstein and J. W. Keer: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259–267. DOI 10.1016/0021-8693(81)90120-4 | MR 0627439
[2] L. Carini and V. D. Filippis: Commutators with power central values on a Lie ideal. Pacific J. Math. 193 (2000), 269–278. DOI 10.2140/pjm.2000.193.269 | MR 1755818
[3] C. L. Chuang: GPI’s having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103 (1988), 723–728. DOI 10.1090/S0002-9939-1988-0947646-4 | MR 0947646
[4] T. S. Erickson, W. S. Martindale III and J. M. Osborn: Prime nonassociative algebras. Pacific J. Math. 60 (1975), 49–63. DOI 10.2140/pjm.1975.60.49 | MR 0382379
[5] N. Jacobson: PI-algebras, an Introduction. Lecture notes in Math., 441, Springer Verlag, New York, 1975. MR 0369421 | Zbl 0326.16013
[6] N. Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964. MR 0222106
[7] V. K. Kharchenko: Differential identity of prime rings. Algebra and Logic. 17 (1978), 155–168. DOI 10.1007/BF01670115 | MR 0541758
[8] C. Lanski: An engel condition with derivation. Proc. Amer. Math. Soc. 118 (1993), 731–734. DOI 10.1090/S0002-9939-1993-1132851-9 | MR 1132851 | Zbl 0821.16037
[9] C. Lanski: Differential identities, Lie ideals, and Posner’s theorems. Pacific J. Math. 134 (1988), 275–297. DOI 10.2140/pjm.1988.134.275 | MR 0961236 | Zbl 0614.16028
[10] W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576–584. DOI 10.1016/0021-8693(69)90029-5 | MR 0238897
[11] E. C. Posner: Derivation in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. DOI 10.1090/S0002-9939-1957-0095863-0 | MR 0095863
Partner of
EuDML logo