[1] E. Acerbi and G. Mingione:
Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001), 121–140.
DOI 10.1007/s002050100117 |
MR 1814973
[2] C. O. Alves and M. A. S. Souto:
Existence of solutions for a class of problems involving the $p(x)$-Laplacian. Progress in Nonlinear Differential Equations and Their Applications 66 (2005), 17–32.
MR 2187792
[3] A. Ambrosetti and P. H. Rabinowitz:
Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349–381.
MR 0370183
[4] H. Brezis:
Analyse fonctionnelle: théorie et applications. Masson, Paris, 1992.
MR 0697382
[5] L. Diening: Theorical and numerical results for electrorheological fluids. Ph.D. thesis, University of Freiburg, Germany, 2002.
[6] D. E. Edmunds, J. Lang and A. Nekvinda:
On $L^{p(x)}$ norms. Proc. Roy. Soc. London Ser. A 455 (1999), 219–225.
MR 1700499
[7] D. E. Edmunds and J. Rákosník:
Density of smooth functions in $W^{k,p(x)}(\Omega )$. Proc. Roy. Soc. London Ser. A 437 (1992), 229–236.
MR 1177754
[12] X. L. Fan and D. Zhao:
On the spaces $L^{p(x)}(\Omega )$ and $W^{m,p(x)}(\Omega )$. J. Math. Anal. Appl. 263 (2001), 424–446.
MR 1866056
[14] O. Kováčik and J. Rákosník:
On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41 (1991), 592–618.
MR 1134951
[15] H. G. Leopold:
Embedding on function spaces of variable order of differentiation in function spaces of variable order of integration. Czech. Math. J. 49 (1999), 633–644.
DOI 10.1023/A:1022483721944 |
MR 1708338
[17] M. Mihăilescu:
Elliptic problems in variable exponent spaces. Bull. Austral. Math. Soc. 74 (2006), 197–206.
MR 2260488
[18] M. Mihăilescu and V. Rădulescu:
A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A 462 (2006), 2625–2641.
MR 2253555
[19] M. Mihăilescu and V. Rădulescu:
On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proceedings of the American Mathematical Society 135 (2007), no. 9, 2929–2937.
DOI 10.1090/S0002-9939-07-08815-6 |
MR 2317971
[20] J. Musielak:
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.
MR 0724434 |
Zbl 0557.46020
[24] C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen and B. Dolgin: Electrorheological fluid based force feedback device, in Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA), Vol. 3840. 1999, pp. 88–99.
[25] P. Rabinowitz:
Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984.
MR 0845785
[26] M. Ruzicka:
Electrorheological Fluids Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2002.
MR 1810360
[27] I. Sharapudinov:
On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1978), 613–632.
MR 0552723
[28] M. Struwe:
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Heidelberg, 1996.
MR 1411681 |
Zbl 0864.49001
[29] I. Tsenov: Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan Gos. Univ. 7 (1961), 25–37.
[30] W. M. Winslow:
Induced fibration of suspensions. J. Appl. Phys. 20 (1949), 1137–1140.
DOI 10.1063/1.1698285
[33] V. Zhikov:
On passing to the limit in nonlinear variational problem. Math. Sb. 183 (1992), 47–84.
MR 1187249