Article
Keywords:
Euler function; prime; divisor
Summary:
For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
References:
[1] Yu. Bilu, G. Hanrot and P. M. Voutier:
Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539 (2001), 75–122.
MR 1863855
[2] R. D. Carmichael:
On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. Math. 15 (1913), 30–70.
MR 1502458
[3] F. Luca:
On the equation $\phi (|x^m+y^m|)=|x^n+y^n|$. Indian J. Pure Appl. Math. 30 (1999), 183–197.
MR 1681596
[4] F. Luca:
On the equation $\phi (x^m-y^m)=x^n+y^n$. Irish Math. Soc. Bull. 40 (1998), 46–55.
MR 1635032
[5] F. Luca:
Euler indicators of binary recurrent sequences. Collect. Math. 53 (2002), 133–156.
MR 1913514
[8] C. Pomerance:
On the distribution of amicable numbers. J. Reine Angew. Math. 293/294 (1977), 217–222.
MR 0447087 |
Zbl 0349.10004