Article
Keywords:
locally conformal Kähler structure; minimal submanifolds; invariant submanifolds; totally real submanifolds; $CR$-submanifolds
Summary:
In this paper we obtain all invariant, anti-invariant and $CR$ submanifolds in $({\mathbb{R}}^4,g,J)$ endowed with a globally conformal Kähler structure which are minimal and tangent or normal to the Lee vector field of the g.c.K. structure.
References:
[2] S. Dragomir, L. Ornea:
Locally Conformal Kähler Geometry. Birkhäuser-Verlag, Boston-Basel-Berlin, 1998.
MR 1481969
[4] H. Inage, K. Matsumoto: $4$-dimensional Kählerian manifolds. Preprint 2004.
[5] P. Libermann:
Sur le problème d’équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36 (1954), 27–120. (French)
DOI 10.1007/BF02412833 |
MR 0066020
[7] K. Yano, M. Kon:
$CR$ Submanifolds of Kaehlerian and Sasakian Manifolds. Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1983.
MR 0688816