Previous |  Up |  Next

Article

Keywords:
Laplace equation; Neumann problem; potential; boundary integral equation method
Summary:
The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed.
References:
[1] D. R.  Adams, L. I.  Hedberg: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften  314. Springer-Verlag, Berlin-Heidelberg, 1995. MR 1411441
[2] D. H.  Armitage, S. J.  Gardiner: Classical Potential Theory. Springer-Verlag, London, 2001. MR 1801253
[3] J.  Deny: Les potentiels d’énergie finie. Acta Math. 82 (1950), 107–183. DOI 10.1007/BF02398276 | MR 0036371 | Zbl 0034.36201
[4] L. E. Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge, 2000. MR 1751289 | Zbl 0947.35002
[5] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics  22. John Wiley & Sons, 1969. MR 0261018
[6] H.  Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. MR 0482021 | Zbl 0309.47001
[7] S.  Jerison, C. E.  Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 47 (1982), 80–147. DOI 10.1016/0001-8708(82)90055-X
[8] P. W.  Jones: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71–88. DOI 10.1007/BF02392869 | MR 0631089 | Zbl 0489.30017
[9] J. J.  Koliha: A generalized Drazin inverse. Glasgow Math.  J. 38 (1996), 367–381. DOI 10.1017/S0017089500031803 | MR 1417366 | Zbl 0897.47002
[10] P.  Koskela, H.  Tuominen: Measure density and extendability of Sobolev functions. (to appear).
[11] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics  823. Springer-Verlag, Berlin, 1980, pp. . MR 0590244
[12] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
[13] V. G.  Maz’ya, S. V.  Poborchi: Differentiable Functions on Bad Domains. World Scientific Publishing, Singapore, 1997. MR 1643072
[14] W.  McLean: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000. MR 1742312 | Zbl 0948.35001
[15] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. DOI 10.1023/A:1023267018214 | MR 1609158
[16] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48 (1998), 768–784. DOI 10.1023/A:1022447908645
[17] C.  Miranda: Differential Equations of Elliptic Type. Springer-Verlag, Berlin, 1970. MR 0284700 | Zbl 0198.14101
[18] I.  Netuka: Smooth surfaces with infinite cyclic variation. Čas. Pěst. Mat. 96 (1971), 86–101. (Czech) MR 0284553 | Zbl 0204.08002
[19] M.  Schechter: Principles of Functional Analysis. Am. Math. Soc., Providence, 2002. MR 1861991
[20] G. E.  Shilov: Mathematical Analysis. Second Special Course. Nauka, Moskva, 1965. (Russian) MR 0219869
[21] Ch. G.  Simader, H.  Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series  360. Addison Wesley Longman Inc., Essex, 1996. MR 1454361
[22] J. Stampfli: Hyponormal operators. Pacific J.  Math. 12 (1962), 1453–1458. DOI 10.2140/pjm.1962.12.1453 | MR 0149282 | Zbl 0129.08701
[23] O. Steinbach, W. L. Wendland: On C.  Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J.  Math. Anal. Appl. 262 (2001), 733–748. DOI 10.1006/jmaa.2001.7615 | MR 1859336
[24] G.  Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J.  Funct. Anal. 59 (1984), 572–611. DOI 10.1016/0022-1236(84)90066-1 | MR 0769382 | Zbl 0589.31005
[25] K.  Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. Zbl 0126.11504
Partner of
EuDML logo