[1] D. R. Adams, L. I. Hedberg:
Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften 314. Springer-Verlag, Berlin-Heidelberg, 1995.
MR 1411441
[2] D. H. Armitage, S. J. Gardiner:
Classical Potential Theory. Springer-Verlag, London, 2001.
MR 1801253
[4] L. E. Fraenkel:
Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge University Press, Cambridge, 2000.
MR 1751289 |
Zbl 0947.35002
[5] L. L. Helms:
Introduction to Potential Theory. Pure and Applied Mathematics 22. John Wiley & Sons, 1969.
MR 0261018
[7] S. Jerison, C. E. Kenig:
Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 47 (1982), 80–147.
DOI 10.1016/0001-8708(82)90055-X
[10] P. Koskela, H. Tuominen: Measure density and extendability of Sobolev functions. (to appear).
[11] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980, pp. .
MR 0590244
[12] N. L. Landkof:
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian)
MR 0214795
[13] V. G. Maz’ya, S. V. Poborchi:
Differentiable Functions on Bad Domains. World Scientific Publishing, Singapore, 1997.
MR 1643072
[14] W. McLean:
Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000.
MR 1742312 |
Zbl 0948.35001
[16] D. Medková:
Solution of the Neumann problem for the Laplace equation. Czechoslovak Math. J. 48 (1998), 768–784.
DOI 10.1023/A:1022447908645
[18] I. Netuka:
Smooth surfaces with infinite cyclic variation. Čas. Pěst. Mat. 96 (1971), 86–101. (Czech)
MR 0284553 |
Zbl 0204.08002
[19] M. Schechter:
Principles of Functional Analysis. Am. Math. Soc., Providence, 2002.
MR 1861991
[20] G. E. Shilov:
Mathematical Analysis. Second Special Course. Nauka, Moskva, 1965. (Russian)
MR 0219869
[21] Ch. G. Simader, H. Sohr:
The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series 360. Addison Wesley Longman Inc., Essex, 1996.
MR 1454361
[23] O. Steinbach, W. L. Wendland:
On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001), 733–748.
DOI 10.1006/jmaa.2001.7615 |
MR 1859336
[25] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504