Article
Keywords:
generalized $MV$-algebra; representability; congruence relation; unital lattice ordered group
Summary:
A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element.
References:
[3] P. Conrad:
Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[5] A. Dvurečenskij, S. Pulmannová:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1861369
[6] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC, Bucharest, 6–9 May, Romania, 1999, pp. 961–968.
MR 1730100
[7] G. Georgescu, A. Iorgulescu:
Pseudo $MV$-algebras. Multiple-Valued Logic 6 (2001), 95–135.
MR 1817439
[8] J. Jakubík:
Normal prime filters of a lattice ordered group. Czech. Math. J. 24 (1974), 91–96.
MR 0347702