[1] A. Ambrosetti, G. Prodi:
A Primer of Nonlinear Analysis. Cambridge Stud. Adv. Math., Vol. 34. Cambridge Univ. Press, Cambridge, 1995.
MR 1336591
[2] J.-P. Aubin, I. Ekeland:
Applied Nonlinear Analysis. John Wiley & Sons, New York, 1984.
MR 0749753
[3] V. Barbu:
Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.
MR 0390843 |
Zbl 0328.47035
[5] H. Brezis:
Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Studies, Vol. 5. North-Holland, Amsterdam, 1973.
MR 0348562
[6] M. Brokate, J. Sprekels:
Hysteresis and Phase Transitions. Appl. Math. Sci., Vol. 121. Springer-Verlag, New York, 1996.
MR 1411908
[7] J. Cahn, J. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958), 258–267.
[8] C. K. Chen, P. C. Fife:
Nonlocal models of phase transitions in solids. Adv. Math. Sci. Appl. 10 (2000), 821–849.
MR 1807453
[11] N. Dunford, J.T. Schwartz:
Linear Operators. Part I. General Theory. Interscience Publishers, New York, 1958.
MR 1009162
[12] T. Fukao, N. Kenmochi, and I. Pawlow:
Transmission problems arising in Czochralski process of crystal growth. In: Mathematical Aspects of Modelling Structure Formation Phenomena. GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 17, N. Kenmochi, M. Niezgódka, and M. Ôtani (eds.), Gakkotosho, Tokyo, 2001, pp. 228–243.
MR 1932116
[13] H. Gajewski:
On a nonlocal model of non-isothermal phase separation. Adv. Math. Sci. Appl. 12 (2002), 569–586.
MR 1943981 |
Zbl 1039.80001
[15] G. Giacomin, J. L. Lebowitz:
Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Statist. Phys. 87 (1997), 37–61.
MR 1453735
[16] G. Giacomin, J. L. Lebowitz:
Phase segregation dynamics in particle systems with long range interactions. II. Interface motion. SIAM J. Appl. Math. 58 (1998), 1707–1729.
DOI 10.1137/S0036139996313046 |
MR 1638739
[17] A. Haraux:
Systèmes dynamiques dissipatifs et applications. Rech. Math. Appl., Vol. 17. Masson, Paris, 1991.
MR 1084372
[18] E. Hille, R. Phillips:
Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., Vol. 31. Am. Math. Soc., Providence, 1957.
MR 0089373
[19] N. Kenmochi, M. Niezgódka, and I. Pawlow:
Subdifferential operator approach to the Cahn-Hilliard equation with constraint. J. Differ. Equations 117 (1995), 320–356.
DOI 10.1006/jdeq.1995.1056 |
MR 1325801
[20] A. Miranville:
Generalized Cahn-Hilliard equations based on a microforce balance. J. Appl. Math. 4 (2003), 165–185.
MR 1981620 |
Zbl 1031.35003
[21] J. F. Rodrigues:
Variational methods in the Stefan problem. In: Phase Transitions and Hysteresis. Lecture Notes in Math., Vol. 1584, A. Visintin (ed.), Springer-Verlag, Berlin, 1994, pp. 147–212.
MR 1321833 |
Zbl 0819.35154
[22] M. Schechter:
Principles of Functional Analysis. Academic Press, New York-London, 1971.
MR 0445263 |
Zbl 0211.14501
[23] J. Simon:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. 146 (1987), 65–96.
MR 0916688
[24] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504