Article
Keywords:
domination number; paired-domination number; tree
Summary:
A set $S$ of vertices in a graph $G$ is called a paired-dominating set if it dominates $V$ and $\langle S\rangle $ contains at least one perfect matching. We characterize the set of vertices of a tree that are contained in all minimum paired-dominating sets of the tree.
References:
[1] P. L. Hammer, P. Hansen and B. Simeone:
Vertices belonging to all or to no maximum stable sets of a graph. SIAM J. Algebraic Discrete Math. 3 (1982), 511–522.
DOI 10.1137/0603052 |
MR 0679645
[4] T. W. Haynes and P. J. Slater:
Paired-domination in graphs. 32 (1998), Networks, 199–206.
MR 1645415
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater:
Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
MR 1605684
[7]
Domination in Graphs: Advanced Topics. T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Marcel Dekker, New York, 1998.
MR 1605685 |
Zbl 0883.00011