[3] R. L. O. Cignoli, I. M. L. D’Ottaviano, and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097
[4] A. Dvurečenskij, S. Pulmannová:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1861369
[6] A. Dvurečenskij, J. Rachůnek:
Bounded commutative residuated $\ell $-monoids with general comparability and states. Soft Comput. 10 (2006), 212–218.
DOI 10.1007/s00500-005-0473-0
[7] P. Hájek:
Metamathematics of Fuzzy Logic. Kluwer, Amsterdam, 1998.
MR 1900263
[8] P. Jipsen, C. Tsinakis:
A survey of residuated lattices. In: Ordered Algebraic Structures, J. Martinez (ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56.
MR 2083033
[10] J. Rachůnek:
$MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$ semigroups. Math. Bohemica 123 (1998), 437–441.
MR 1667115
[11] J. Rachůnek:
A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohemica 126 (2001), 561–569.
MR 1970259
[12] J. Rachůnek, D. Šalounová:
Boolean deductive systems of bounded commutative residuated $\ell $-monoids. Contrib. Gen. Algebra 16 (2005), 199–207.
MR 2166959
[14] J. Rachůnek, V. Slezák:
Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca. 56 (2006), 223–233.
MR 2229343
[18] E. Turunen, S. Sessa:
Local $BL$-algebras. Multip. Val. Logic 6 (2001), 229–250.
MR 1817445