Previous |  Up |  Next

Article

Keywords:
subadditive measure; lattice ordered groups
Summary:
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a $\sigma $-algebra.
References:
[1] V. N.  Alexiuk, F. D.  Beznosikov: Extension of continuous outer measure on a Boolean algebra. Izv. VUZ 4(119) (1972), 3–9. (Russian)
[2] I. Dobrakov: On subadditive operators on  $C_0(T)$. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 561–562. MR 0318856 | Zbl 0237.47035
[3] L. Drewnowski: Topological rings of sets, continuous set functions, integration  I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 269–276. MR 0306432 | Zbl 0249.28004
[4] L. Drewnowski: Topological rings of sets, continuous set functions, integration  II. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 277–286. MR 0316653 | Zbl 0249.28005
[5] D. H. Fremlin: A direct proof of the Mathes-Wright integral extension theorem. J.  London Math. Soc.,  II. Ser.  11 (1975), 267–284. MR 0380345
[6] B. Riečan: An extension of the Daniell integration scheme. Mat. Čas. 25 (1975), 211–219. MR 0396889
[7] B. Riečan, T.  Neubrunn: Integral, Measure and Ordering. Mathematics and its Applications,  411. Kluwer, Dordrecht, 1997. MR 1489521
[8] B.  Riečan, P.  Volauf: On a technical lemma in lattice ordered groups. Acta Math. Univ. Comenianae 44–45 (1984), 31–35. MR 0775002
Partner of
EuDML logo