Article
Keywords:
subadditive measure; lattice ordered groups
Summary:
A lattice ordered group valued subadditive measure is extended from an algebra of subsets of a set to a $\sigma $-algebra.
References:
[1] V. N. Alexiuk, F. D. Beznosikov: Extension of continuous outer measure on a Boolean algebra. Izv. VUZ 4(119) (1972), 3–9. (Russian)
[2] I. Dobrakov:
On subadditive operators on $C_0(T)$. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 561–562.
MR 0318856 |
Zbl 0237.47035
[3] L. Drewnowski:
Topological rings of sets, continuous set functions, integration I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 269–276.
MR 0306432 |
Zbl 0249.28004
[4] L. Drewnowski:
Topological rings of sets, continuous set functions, integration II. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 20 (1972), 277–286.
MR 0316653 |
Zbl 0249.28005
[5] D. H. Fremlin:
A direct proof of the Mathes-Wright integral extension theorem. J. London Math. Soc., II. Ser. 11 (1975), 267–284.
MR 0380345
[6] B. Riečan:
An extension of the Daniell integration scheme. Mat. Čas. 25 (1975), 211–219.
MR 0396889
[7] B. Riečan, T. Neubrunn:
Integral, Measure and Ordering. Mathematics and its Applications, 411. Kluwer, Dordrecht, 1997.
MR 1489521
[8] B. Riečan, P. Volauf:
On a technical lemma in lattice ordered groups. Acta Math. Univ. Comenianae 44–45 (1984), 31–35.
MR 0775002