[1] N. N. Bautin:
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus. Mat. Sbornik 30(72) (1952), 181–196.
MR 0045893 |
Zbl 0059.08201
[2] I. Bendixson: Sur les courbes définies par des équations différentielles. Acta Math. 24 (1900), 1–88. (French)
[3] W. A. Coppel:
Some quadratics systems with at most one limit cycle. Dynam. report. Expositions Dynam. Systems (N.S.) 2 (1989), 61–88.
MR 1000976
[4] D. Cozma, A. Suba:
The solution of the problem of center for cubic differential systems with four invariant straight lines. An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Nuova, Mat. 44 (Suppl.) (1999), 517–530.
MR 1814187
[5] D. Cozma, A. Suba:
Solution of the problem of center for a cubic differential systems with three invariant straight lines. Qual. Theory Dyn. Syst. 2 (2001), 129–143.
DOI 10.1007/BF02969386 |
MR 1844982
[6] J. Chavarriga, E. Sáez, I. Szántó, and M. Grau:
Coexistence of limit cycles and invariant algebraic curves on a Kukles systems. Nonlinear Anal., Theory Methods Appl. 59 (2004), 673–693.
DOI 10.1016/S0362-546X(04)00278-0 |
MR 2096323
[7] C. Lansun, W. Mingshu:
Relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. 22 (1979), 751–758. (Chinese)
MR 0559742
[8] L. A. Cherkas, L. I. Zhilevich: The limit cycles of some differential equations. Differ. Uravn. 8 (1972), 924–929. (Russian)
[10] D. Guoren, W. Songlin: Closed orbits and straight line invariants in $E_3$ systems. Acta Mathematica Sci. 9 (1989), 251–261. (Chinese)
[11] H. Dulac:
Sur les cycles limites. S. M. F. Bull. 51 (1923), 45–188. (French)
MR 1504823
[14] R. Kooij: Limit cycles in polynomial systems. PhD. thesis, University of Technology, Delft, 1993.
[15] J. Li: Hilbert’s 16th problem for $ n=3 \: H(3) \ge 11 $. Kexue Tongbao 31 (1984), 718.
[16] A. Liénard: Etude des oscillations entreteneues. Re. générale de l’électricité 23 (1928), 901–912. (French)
[17] Z. H. Liu, E. Sáez, and I. Szántó:
A cubic systems with an invariant triangle surrounding at last one limit cycle. Taiwanese J. Math. 7 (2003), 275–281.
DOI 10.11650/twjm/1500575064 |
MR 1978016
[20] N. G. Lloyd, J. M. Pearson:
Five limit cycles for a simple cubic system. Publications Mathematiques 41 (1997), 199–208.
MR 1461651
[21] N. G. Lloyd, T. R. Blows, and M. C. Kalenge:
Some cubic systems with several limit cycles. Nonlinearity (1988), 653–669.
MR 0967475
[23] H. Poincaré: Mémorie sur les courbes définies par leś équations differentialles I–VI, Oeuvre I. Gauthier-Villar, Paris, 1880–1890. (French)
[24] L. S. Pontryagin: On dynamical systems close to Hamiltonian ones. Zh. Eksper. Teoret. Fiz. 4 (1934), 883–885. (Russian)
[25] J. W. Reyn: A bibliography of the qualitative theory of quadratic systems of differential equation in the plane. Report TU Delft 92-17, second edition, 1992.
[26] E. Sáez, I. Szántó, and E. González-Olivares:
Cubic Kolmogorov system with four limit cycles and three invariant straight lines. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4521–4525.
DOI 10.1016/S0362-546X(01)00565-X |
MR 1975846
[27] S. Songling:
A concrete example of the existence of four limit cycles for planar quadratics systems. Sci. Sin. XXIII (1980), 153–158.
MR 0574405
[28] S. Songling: System of equation ($ E_{3}$) has five limit cycles. Acta Math. Sin. 18 (1975). (Chinese)
[29] S. Guangjian, S. Jifang:
The $n$-degree differential system with $\frac{1}{2}{(n-1)(n+1)}$ straight line solutions has no limit cycles. Proc. Conf. Ordinary Differential Equations and Control Theory, Wuhan 1987 (1987), 216–220. (Chinese)
MR 1043472
[33] Y. Yanqian, Y. Weiyin:
Cubic Kolmogorov differential system with two limit cycles surrounding the same focus. Ann. Differ. Equations 1 (1985), 201–207.
MR 0834242
[34] P. Yu and M. Han:
Twelve limit cycles in a cubic order planar system with $Z_2$-symmetry. Communications on pure and applied analysis 3 (2004), 515–526.
MR 2098300
[36] W. Stephen:
A System for Doing Mathematics by Computer. Wolfram Research Mathematica, 1988.
Zbl 0671.65002