[2] E. Balder, C. Hess:
Two generalizations of Komlós theorem with lower closure-type applications. J. Convex Anal. 3 (1996), 25–44.
MR 1422749
[3] E. Balder, A. R. Sambucini:
On weak compactness and lower closure results for Pettis integrable (multi)functions. Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61.
DOI 10.4064/ba52-1-6 |
MR 2070028
[4] C. Castaing:
Weak compactness and convergences in Bochner and Pettis integration. Vietnam J. Math. 24 (1996), 241–286.
MR 2010821
[5] C. Castaing, P. Clauzure:
Compacité faible dans l’espace $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation. Ann. Mat. Pura Appl. 140 (1985), 345–364.
DOI 10.1007/BF01776856 |
MR 0807644
[6] C. Castaing, M. Valadier:
Convex Analysis and Measurable Multifunctions. Lect. Notes Math. Vol. 580, Springer-Verlag, Berlin, 1977.
DOI 10.1007/BFb0087688 |
MR 0467310
[7] T. S. Chew, F. Flordeliza:
On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868.
MR 1108065
[10] M. Federson, R. Bianconi:
Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417.
MR 1758896
[11] M. Federson, P. Táboas:
Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. Ser. A: Theory Methods 50 (2002), 389–407.
MR 1906469
[12] J. L. Gamez, J. Mendoza:
On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133.
MR 1623348
[16] C. Hess, H. Ziat:
Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications. Ann. Sci. Math. Québec 26 (2002), 181–198.
MR 1980843
[18] K. Musial:
Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May 1992. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262.
MR 1248654
[20] S. Schwabik:
The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882.
MR 1222306 |
Zbl 0784.34006