Previous |  Up |  Next

Article

Keywords:
Komlós convergence; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis set-valued integral; selection
Summary:
This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.
References:
[1] E.  Balder: New sequential compactness results for spaces of scalarly integrable functions. J.  Math. Anal. Appl. 151 (1990), 1–16. DOI 10.1016/0022-247X(90)90237-A | MR 1069442 | Zbl 0733.46015
[2] E. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type applications. J.  Convex Anal. 3 (1996), 25–44. MR 1422749
[3] E.  Balder, A. R.  Sambucini: On weak compactness and lower closure results for Pettis integrable (multi)functions. Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. DOI 10.4064/ba52-1-6 | MR 2070028
[4] C.  Castaing: Weak compactness and convergences in Bochner and Pettis integration. Vietnam J.  Math. 24 (1996), 241–286. MR 2010821
[5] C.  Castaing, P.  Clauzure: Compacité faible dans l’espace  $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation. Ann. Mat. Pura Appl. 140 (1985), 345–364. DOI 10.1007/BF01776856 | MR 0807644
[6] C.  Castaing, M.  Valadier: Convex Analysis and Measurable Multifunctions. Lect. Notes Math. Vol.  580, Springer-Verlag, Berlin, 1977. DOI 10.1007/BFb0087688 | MR 0467310
[7] T. S.  Chew, F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. MR 1108065
[8] M.  Cichón, I.  Kubiaczyk, A. Sikorska: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak Math.  J. 54 (2004), 279–289. DOI 10.1023/B:CMAJ.0000042368.51882.ab | MR 2059250
[9] K.  El Amri, C.  Hess: On the Pettis integral of closed valued multifunctions. Set-Valued Analysis 8 (2000), 329–360. DOI 10.1023/A:1026547222209 | MR 1802239
[10] M.  Federson, R.  Bianconi: Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417. MR 1758896
[11] M.  Federson, P.  Táboas: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. Ser.  A: Theory Methods 50 (2002), 389–407. MR 1906469
[12] J. L.  Gamez, J.  Mendoza: On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. MR 1623348
[13] R. A.  Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals]. Studia Math. 92 (1989), 73–91. DOI 10.4064/sm-92-1-73-91 | MR 0984851 | Zbl 0681.28006
[14] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math. Vol  4, AMS, Providence, 1994. DOI 10.1090/gsm/004/09 | MR 1288751 | Zbl 0807.26004
[15] C.  Hess: On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence. J.  Multivariate Anal. 39 (1991), 175–201. DOI 10.1016/0047-259X(91)90012-Q | MR 1128679 | Zbl 0746.60051
[16] C.  Hess, H.  Ziat: Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications. Ann. Sci. Math. Québec 26 (2002), 181–198. MR 1980843
[17] J.  Komlós: A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. DOI 10.1007/BF02020976 | MR 0210177
[18] K.  Musial: Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May  1992. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. MR 1248654
[19] L.  Di Piazza, K.  Musial: Set-valued Kurzweil-Henstock-Pettis integral. Set-Valued Analysis 13 (2005), 167–179. DOI 10.1007/s11228-004-0934-0 | MR 2148134
[20] S.  Schwabik: The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882. MR 1222306 | Zbl 0784.34006
Partner of
EuDML logo