Previous |  Up |  Next

Article

Keywords:
finite group; $p$-nilpotent group; primary subgroups; complemented subgroups
Summary:
A subgroup $H$ of a group $G$ is said to be complemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$. In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about $p$-nilpotent groups.
References:
[1] Z. Arad, M. B. Ward: New criteria for the solvability of finite groups. J. Algebra 77 (1982), 234–246. MR 0665175
[2] A. Ballester-Bolinches, X. Guo: On complemented subgroups of finite groups. Arch. Math. 72 (1999), 161–166. DOI 10.1007/s000130050317 | MR 1671273
[3] F. Gross: Conjugacy of odd order Hall subgroup. Bull. London Math. Soc. 19 (1987), 311–319. DOI 10.1112/blms/19.4.311 | MR 0887768
[4] W. Guo: The Theory of Classes of Groups. Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000. MR 1862683 | Zbl 1005.20016
[5] W. Guo: The influence of minimal subgroups on the structure of finite groups. Southeast Asian Bulletin of Mathematics 22 (1998), 287–290. MR 1684151 | Zbl 0937.20008
[6] P. Hall: A characteristic property of soluble groups. J.  London Math. Soc. 12 (1937), 188–200. MR 1575073 | Zbl 0016.39204
[7] B. Huppert: Endliche Gruppen  I. Springer-Verlag, Berlin-Heidelberg-New York, 1967. MR 0224703 | Zbl 0217.07201
[8] O. H. Kegel: On Huppert’s characterization of finite supersoluble groups. In: Proc. Internat. Conf. Theory Groups, Canberra, 1965, , New York, 1967, pp. 209–215. MR 0217183 | Zbl 0178.02101
[9] O. H. Kegel: Produkte nilpotenter gruppen. Arch. Math. 12 (1961), 90–93. DOI 10.1007/BF01650529 | MR 0133365 | Zbl 0099.01401
[10] D. J. Robinson: A Course in the Theory of Groups. Springer-Verlag, Berlin-New York, 1993. MR 1261639
[11] Y. Wang: Finite groups with some subgroups of Sylow subgroups c-supplemented. J. Algebra 224 (2000), 467–478. MR 1739589 | Zbl 0953.20010
[12] M. Xu: An Introduction to Finite Groups. Science Press, Beijing, 1999. (Chinese)
[13] Y. Zhang: The Structure of Finite Groups. Science Press, Beijing, 1982. (Chinese)
Partner of
EuDML logo