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HENSTOCK-KURZWEIL-PETTIS INTEGRAL AND APPLICATIONS

B. Satco, Brest
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Abstract. This paper presents a Komlós theorem that extends to the case of the set-valued
Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably
bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As
applications, a solution to a best approximation problem is given, weak compactness re-
sults are deduced and, finally, an existence theorem for an integral inclusion involving the
Henstock-Kurzweil-Pettis set-valued integral is obtained.
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1. Introduction

Komlós’s classical theorem (see [17]) yields that from any L1-bounded sequence

of real functions one can extract a subsequence such that the arithmetic averages of
all its subsequences converge pointwise almost everywhere. Similar results were then

obtained in the vector-valued case and, moreover, in the case of Pwkc(X)-valued
functions, X being a separable Banach space: in Theorem 2.5 in [2] an integrable
boundedness condition is imposed, while Theorem 3.1 in [16] requires Pettis integra-

bility of the multifunctions.

Through the present work, we extend these results providing a Komlós-type theo-
rem for Pwkc(X)-valued functions under Henstock-Kurzweil-Pettis integrability as-
sumptions. The set-valued Henstock-Kurzweil-Pettis integral was introduced in [19]
in the same manner as the Pettis set-valued integral (see e.g. [9]), but the support

functionals are integrated in the Henstock-Kurzweil sense instead of the Lebesgue
one.
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Our method is based on an abstract Komlós-type result (Theorem 2.1 in [1]), which

was also used to obtain a Komlós theorem for Pettis integrable (multi)functions in [3].
As a corollary, a Komlós result similar to that obtained in [16] for the Pettis set-
valued integral is given.

In the second part of the work, we apply the results obtained in the first part to
give a solution to a best approximation problem. Such a problem was investigated

under different assumptions in [5] for integrably bounded multifunctions, as well as
in [16] for Pettis integrable set-valued applications.

The third section contains several weak compactness criteria in the set-valued
HKP-integration, using Komlós’s results given above and a uniform integrability
condition specific to the HK integrability. In particular, a weak compactness result

for the family of all integrable multi-selections of an HKP-integrable weakly compact
convex-valued multifunction is proved.

Recently, many authors have investigated the existence of solutions of differen-
tial (or integral) equations under Henstock-Kurzweil (e.g. [7], [10], [11] and [20])

and Henstock-Kurzweil-Pettis integrability assumptions (e.g. [8]). In that line, we
obtain an existence result for a set-valued integral equation involving the Henstock-

Kurzweil-Pettis integral which represents an extension of Theorem VI-7 in [6] (where
the Pettis integrability is required).

2. Terminology and notation

Let us begin by introducing the basic facts on the Henstock-Kurzweil integrability,

a concept that on the real line extends the classical Lebesgue one.

A positive function δ on a real interval [0, T ] provided with the Lebesgue σ-al-

gebra Σ and the Lebesgue measure µ = ds is called a gauge. A partition of [0, T ]
is a finite family (Ii, ti)

k
i=1 of nonoverlapping intervals that covers [0, T ] with the

associated so-called tags ti ∈ Ii. A partition is said to be δ-fine if for each i, Ii ⊂
]ti − δ(ti), ti + δ(ti)[.

Definition 1. A function f : [0, T ] → �
is Henstock-Kurzweil (shortly, HK-)

integrable if there exists a real, denoted by (HK)
∫ T

0 f(t) dt, satisfying that for ev-
ery ε > 0 one can find a gauge δε such that, for every δε-fine partition (Ii, ti)

k
i=1,∣∣∣

k∑
i=1

f(ti)µ(Ii)−(HK)
∫ T

0
f(t) dt

∣∣∣ < ε. The function f is HK-integrable on a measur-

able E ⊂ [0, T ] if fχE is HK-integrable on [0, T ].

Remark 2. Theorem 9.8 in [14] yields that an HK-integrable function is
HK-integrable on any subinterval and, by Theorem 9.12 in [14], its primitive
(HK)

∫ ·
0
f(t) dt is continuous.
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Let us recall the properties that connect this kind of integrability with the

Lebesgue one:

Proposition 3 (Theorem 9.13 in [14]). Let f : [0, T ] → �
be HK-integrable on

[0, T ]. Then
a) f is measurable;

b) if f is nonnegative on [0, T ], then it is Lebesgue integrable;
c) f is Lebesgue integrable on [0, T ], if and only if it is HK-integrable on every
measurable subset of [0, T ].

The Lebesgue integrability is preserved under multiplication by essentially

bounded real functions. The following result states that the HK-integrability is
preserved under multiplication by functions of bounded variation.

Lemma 4 (Theorem 12.21 in [14]). Let f : [0, T ] → �
be an HK-integrable

function and let g : [0, T ] → �
be of bounded variation. Then fg is HK-integrable.

We will also use the following uniform integrability notion, specific to the HK-

integrability, that allows to obtain a Vitali-type convergence result (Theorem 13.16
in [14]):

Definition 5. A family F of HK-integrable functions defined on [0, T ] is said to
be uniformly HK-integrable if for each ε > 0 there exists a gauge δε such that for every

δε-fine partition of [0, T ] and every f ∈ F ,
∣∣∣

k∑
i=1

f(ti)µ(Ii)− (HK)
∫ T

0 f(t) dt
∣∣∣ < ε.

Let us note that this concept does not allow us to ignore the µ-null sets, as is

shown by the following example.

Example 6 (see [14], p. 209). The sequence (fn)n∈ � , where fn : [0, 1] → �
is

defined for each n ∈ � by fn(t) = 0 ∀t ∈ ]0, 1] and fn(0) = n, is not uniformly

HK-integrable, although all functions of this sequence differ only at one point.

Remark 7. The class of Henstock-Kurzweil integrable functions (which coincides
with the class of Denjoy and Perron integrable functions, cf. [14]) is contained in
the class of Khintchine integrable functions (see [14], Chapter 15). In [13] and [12],

Khintchine integrability is called Denjoy integrability. This will not lead to any
confusion, because we will use only the HK-integral and, when appealing to the
results in [13] and [12], we will mean the integration in Khintchine sense.

Through the paper, X is a separable Banach space, X∗ andX∗∗ denote its topolog-
ical dual and bi-dual, respectively, and Pwkc(X) stands for the family of its weakly
compact convex subsets. On Pwkc(X) the Hausdorff distance D is considered and,
for every A ∈ Pwkc(X), we put |A| = D(A, {0}).
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A well known extension of the Lebesgue integral to the Banach-valued case is the

Pettis integral (see [18]). One can generalize this notion of integrability by consider-
ing for the canonical bilinear form 〈·, ·〉 the HK-integral instead of the Lebesgue one
as follows:

Definition 8. A function f : [0, T ] → X is said to be Henstock-Kurzweil-Pettis

(shortly, HKP-) integrable if
1) f is scalarly HK-integrable, i.e. for all x∗ ∈ X∗, 〈x∗, f(·)〉 is HK-integrable;
2) for each [a, b] ⊂ [0, T ] there exists x[a,b] ∈ X such that

〈x∗, x[a,b]〉 = (HK)
∫ b

a

〈x∗, f(s)〉 ds,

for all x∗∈X∗.

We denote x[a,b] by (HKP)
∫ b

a
f(s) ds and call it the HKP-integral of f on [a, b].

If in the condition 2) we require only x[a,b] ∈ X∗∗, then f is called Henstock-
Kurzweil-Dunford (shortly, HKD-) integrable.

Remark 9.
i) Following Remark 2, if f is HKP-integrable, then its primitive (HKP)

∫ ·
0 f(t) dt

is weakly continuous.

ii) Obviously, any Pettis integrable function is HKP-integrable. The converse is
not true: the function considered in Section 4 in [12] provides an example.

One can consider (via Lemma 4) the space of HKP-integrable X-valued func-

tions equipped with the topology induced by the tensor product of the space
of real functions of bounded variation and X∗ (we call it the weak-Henstock-

Kurzweil-Pettis topology and denote it by w-HKP). That is: fα → f if, for every
g : [0, T ] → �

of bounded variation and every x∗ ∈ X∗, (HK)
∫ T

0
g(s)〈x∗, fα(s)〉 ds →

(HK)
∫ T

0 g(s)〈x∗, f(s)〉 ds. Our considerations arise naturally from Pettis integrabil-
ity setting, where the topology induced on the space of Pettis integrable functions

by the tensor product L∞([0, T ])⊗X∗ is called the weak-Pettis topology.
Let us recall various kinds of set-valued measurability and integrability that will be

used in the sequel. The support functional of A ∈ Pwkc(X) is denoted by σ(·, A) and
is defined by σ(x∗, A) = sup{〈x∗, x〉, x ∈ A} for all x∗ ∈ X∗. A set-valued function

F : [0, T ] → X is said to be measurable if, for every open subset O ⊂ X , the set
F−1(O) = {t ∈ [0, T ]; F (t) ∩ O 6= ∅} is measurable. F is called scalarly measurable

if, for every x∗ ∈ X∗, σ(x∗, F (·)) is measurable. According to Theorem III-37 in [6],
in the case when X is separable, a Pwkc(X)-valued multifunction is measurable if
and only if it is scalarly measurable. A function f : [0, T ] → X is called a selection
of F if f(t) ∈ F (t) a.e.
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Definition 10.
i) A multifunction Γ is said to be integrably bounded if the real function |Γ(·)| is
Lebesgue integrable.

ii) Γ is said to be scalarly (resp. scalarly HK-) integrable if, for every x∗ ∈ X∗,
σ(x∗, Γ(·)) is Lebesgue (resp. HK-) integrable.

iii) A Pwkc(X)-valued function Γ is “Pettis integrable in Pwkc(X)” (or, simply,
Pettis integrable since we will work only with Pwkc(X)) if it is scalarly inte-
grable, and for every A ∈ Σ there exists IA∈Pwkc(X) such that σ(x∗, IA) =∫

A
σ(x∗, Γ(t)) dt for each x∗∈X∗. We denote IA by (P)

∫
A

Γ(t) dt.

iv) APwkc(X)-valued function Γ is “HKP-integrable inPwkc(X)” (shortly, HKP-
integrable) if it is scalarly HK-integrable, and for every [a, b] ⊂ [0, T ] there
exists Ib

a ∈ Pwkc(X), such that σ(x∗, Ib
a) = (HK)

∫ b

a
σ(x∗, Γ(t)) dt, ∀x∗∈X∗.

We denote Ib
a by (HKP)

∫ b

a Γ(t) dt.

Obviously, in the particular case of a single-valued function, these concepts coin-

cide with those given previously in the vector case.

It is worthwhile to restate here the characterizations of HKP-integrablePwkc(X)-
valued multifunctions given in Theorem 1 in [19]:

Theorem 11. Let Γ: [0, T ] → Pwkc(X) be a scalarly HK-integrable multifunc-
tion. Then the following conditions are equivalent:

i) Γ is HKP-integrable;
ii) Γ has at least one HKP-integrable selection and for every HKP-integrable se-
lection f there exists G : [0, T ] → Pwkc(X) Pettis integrable, such that Γ(t) =
f(t) + G(t), ∀ t ∈ [0, T ];

iii) each measurable selection of Γ is HKP-integrable.

In the set-valued setting, we will use the following Komlós-type convergence
(see 17]), involving the support functionals:

Definition 12. A sequence (Fn)n of Pwkc(X)-valued multifunctions is said to
be Komlós-convergent (shortly, K-convergent) to aPwkc(X)-valued multifunction F

if for every subsequence (Fkn)n there exists a µ-null set N ⊂ [0, T ] (depending on
the subsequence) such that for every x∗ ∈ X∗ and every t ∈ [0, T ] \N ,

σ(x∗, F (t)) = lim
n

σ

(
x∗,

1
n

n∑

i=1

Fki(t)
)

.
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3. A Komlós theorem for the set-valued

Henstock-Kurzweil-Pettis integral

By using an abstract Komlós-type theorem proved in [1], we obtain a Komlós-type

result for the Henstock-Kurzweil-Pettis set-valued integral. For the convenience of
the reader, we recall here Theorem 2.1 in [1], for the presentation of which we need

some notation.
Let (Ω, Σ, µ) be a finite measure space and Y a convex cone, provided with a

topology compatible with the operations of addition and multiplication by positive
scalars. B(Y ) will denote its Borel σ-algebra. Consider a collection A of Σ⊗B(Y )-
measurable functions a : Ω × Y → �

such that, for every ω ∈ Ω, a(ω, ·) is affine
and continuous on Y . A function f : Ω → Y is said to be A -scalarly measurable

if for every a ∈ A , the real function a(·, f(·)) is Σ-measurable. Suppose that there
exists a sequence (aj)j∈ � ⊂ A which separates the points of Y . This means that

for every ω ∈ Ω, y = z if and only if aj(ω, y) = aj(ω, z), ∀ j ∈ � . Given a function
h : Ω × Y → [0, +∞], we say that h(ω, ·) is (sequentially) inf-compact if for every
ω ∈ Ω and α ∈ �

, the set {y ∈ Y ; h(ω, y) 6 α} is sequentially compact.

Theorem 13 (Theorem 2.1 in [1]). Let (fn)n∈ � be a sequence of A -scalarly

measurable Y -valued functions defined on Ω and satisfying that there exists h : Ω×
Y → [0, +∞] such that h(ω, ·) is convex and sequentially inf-compact and
1) supn

∫
Ω |aj(ω, fn(ω))|µ(dω) < +∞, ∀ j ∈ � ;

2) supn

∫ ∗
Ω

h(ω, fn(ω))µ(dω) < +∞.
Then there exists a subsequence (fkn)n ⊂ (fn)n that Komlós-converges to an

A -scalarly measurable function f such that
∫ ∗
Ω

h(ω, f(ω))µ(dω) < +∞.

In the preceding theorem,
∫ ∗
Ω is the outer integration with respect to µ, that is, for

a (possibly non-measurable) function ϕ : Ω → �
, we have

∫ ∗
Ω

ϕ dµ = inf{
∫
Ω

ϕ dµ, ϕ ∈
L1(µ), ϕ > ϕ a.e.}.
Applying this result to an appropriate convex cone Y and a suitable family A of

affine continuous functions, we obtain, in the set-valued Henstock-Kurzweil-Pettis
integrability setting, the following Komlós-type result:

Theorem 14. Let X be a separable Banach space which is weakly sequentially

complete and let Fn : [0, T ] → Pwkc(X) be a sequence of HKP-integrable multifunc-
tions. Suppose that

i) for every x∗ ∈ X∗

ia) there exists a real HK-integrable function fx∗ such that

fx∗(t) 6 σ(x∗, Fn(t)), ∀ t ∈ [0, T ], ∀n ∈ � ;
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ib) sup
n∈ �

(HK)
∫ T

0
σ(x∗, Fn(t)) dt < +∞;

ii) there exist a function h : [0, T ]× Pwkc(X) → [0, +∞] such that, for every t ∈
[0, T ], h(t, ·) is convex and sequentially inf-compact, and a countable measurable
partition (Bm)m of [0, T ] satisfying, for every m ∈ � , the following conditions:
iia) supn

∫
Bm

|σ(x∗, Fn(t))| dt < +∞, ∀x∗ ∈ X∗;

iib) supn

∫ ∗
Bm

h(t, Fn(t)) dt < +∞.
Then there exist an HKP-integrablePwkc(X)-valued function F and a subsequence

of (Fn)n which K-converges to F . Moreover,
∫ ∗

Bm
h(t, F (t)) dt < +∞ for eachm ∈ � .

�������
	
. By the separability assumption on X , we can find a Mackey-dense

sequence (x∗k)k in the unit ball of X∗. Consider the convex cone Y = Pwkc(X)
provided with the coarsest topology with respect to which all support functionals
are continuous. Consider also the family A = {ax∗ : x∗ ∈ X∗} of functions ax∗ :
[0, T ] × Y → �

, defined as ax∗(t, C) = σ(x∗, C), which are affine and continuous
on Y . Take the countable subfamily {ax∗

k
: k ∈ � } that, by the Mackey-density

assumption, separates the points of Y . Applying Theorem 13 on each Bm, after a
diagonal process we obtain a subsequence (Fkn)n which is Komlós-convergent to a

scalarly measurablePwkc(X)-valued function F . Moreover,
∫ ∗

Bm
h(t, F (t)) dt < +∞

for each m ∈ � .
In order to prove the scalar HK-integrability of the limit multifunction, fix x∗ ∈ X∗

and use the hypotheses ia) and ib). For every n ∈ � , the positive function −fx∗ +

σ
(
x∗,

1
n

n∑
i=1

Fki

)
is HK-integrable, therefore, by Theorem 9.13 in [14], it is Lebesgue

integrable. We are now able to apply Fatou’s Lemma to the sequence
(
−fx∗ +

σ
(
x∗,

1
n

n∑
i=1

Fki

))
n
in order to obtain

∫ T

0

(−fx∗(t) + σ(x∗, F (t))) dt

6 lim inf
n

∫ T

0

−fx∗(t) + σ

(
x∗,

1
n

n∑

i=1

Fki(t)
)

dt

= (HK)
∫ T

0

−fx∗(t) dt + lim inf
n

(HK)
∫ T

0

σ

(
x∗,

1
n

n∑

i=1

Fki(t)
)

dt

6 (HK)
∫ T

0

−fx∗(t) dt + sup
n∈ �

(HK)
∫ T

0

σ(x∗, Fn(t)) dt < +∞.

Consequently, −fx∗(·) + σ(x∗, F (·)) is Lebesgue integrable and, since fx∗ is HK-
integrable, the HK-integrability of σ(x∗, F (·)) follows.

1035



Every measurable selection f of F is scalarly HK-integrable since, for each

x∗ ∈ X∗,

−σ(−x∗, F (t)) 6 〈x∗, f(t)〉 6 σ(x∗, F (t)), a.e. t ∈ [0, T ].

By Remark 7, f is Khintchine integrable too. Theorem 3 in [12] yields that, for

every [a, b] ⊂ [0, T ], there exists an element of the bi-dual x∗∗[a,b] ∈ X∗∗ such that,

for every x∗ ∈ X∗, 〈x∗, x∗∗[a,b]〉 =
∫ b

a
〈x∗, f(s)〉 ds, the integral being in the Khint-

chine sense. As the function to integrate is HK-integrable too, we have 〈x∗, x∗∗[a,b]〉 =

(HK)
∫ b

a 〈x∗, f(s)〉 ds. The Banach space being weakly sequentially complete by The-
orem 40 in [13], we have x∗∗[a,b] ∈ X for every subinterval. Thus every measurable

selection of F is HKP-integrable.
Finally, the implication iii) ⇒ i) in Theorem 11 ensures the HKP-integrability of

the limit set-valued function. �

The following Blaschke-type compactness criteria (e.g. Lemma 5.1 in [15]) will
allow us to obtain a useful consequence.

Lemma 15. Let X be a separable Banach space and let M ∈ Pwkc(X). Then
the family of all weakly compact convex subsets ofM is compact with respect to the

coarsest topology of Pwkc(X) for which σ(x∗, ·) is continuous for every x∗ ∈ X∗.

Corollary 16. Let X be a weakly sequentially complete separable Banach

space and let (Fn)n be a sequence of HKP-integrable multifunctions Fn : [0, T ] →
Pwkc(X). Suppose that i) of the preceding theorem holds and that there is
a Pwkc(X)-valued multifunction F̃ such that Fn(t) ⊂ F̃ (t) a.e. for all n ∈ � .
Then there exist an HKP-integrablePwkc(X)-valued function F and a subsequence

of (Fn)n which K-converges to F .
�������
	

. Let us define h : [0, T ]×Pwkc(X) → [0, +∞] by

h(t, C) =

{
0 if C ⊂ F̃ (t),

+∞ otherwise.

It is convex and sequentially inf-compact with respect to the second variable. Indeed,

fix t ∈ [0, T ] and α ∈ �
. If α < 0, then {C ∈ Pwkc(X); h(t, C) 6 α} = ∅. Otherwise,

{C ∈ Pwkc(X); h(t, C) 6 α} = {C ∈ Pwkc(X); C ⊂ F̃ (t)} which, by Lemma 15, is
compact with respect to the topology of Pwkc(X).
The countable measurable partition (Bm)m of the real interval given by

Bm = {t ∈ [0, T ]; m− 1 6 |F̃ (t)| < m}, ∀m ∈ �
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satisfies hypothesis ii) in the preceding theorem: for every m ∈ � ,

sup
n∈ �

∫

Bm

|σ(x∗, Fn(t))| dt 6
∫

Bm

|σ(x∗, F̃ (t))| dt 6
∫

Bm

|F̃ (t)| dt < +∞;

therefore, we are able to apply Theorem 14. �

The next consequence is a Komlós-type result similar to Theorem 3.1 in [16] for

the set-valued Pettis integral:

Theorem 17. Let X be a separable reflexive Banach space and (Fn)n a sequence

of HKP-integrablePwkc(X)-valued multifunctions satisfying hypothesis i) in Theo-
rem 14 and

ii′) one can find a measurable countable partition (Bm)m of [0, T ] such that, for
each m ∈ � ,

sup
n∈ �

∫

Bm

|Fn(t)| dt < +∞.

Then there exist an HKP-integrable Pwkc(X)-valued function F and a subse-

quence of (Fn)n which K-converges to F . Moreover,
∫

Bm
|F (t)| dt < +∞ for every

m ∈ � .
�������
	

. Alaoglu-Bourbaki’s theorem yields that the function h : [0, T ] ×
Pwkc(X) → [0, +∞] defined by h(t, C) = |C| is convex and inf-compact in the sec-
ond variable, whence, thanks to Theorem 14, we obtain the announced result. �

Applying Biting Lemma, we can prove a stronger property of the above mentioned

subsequence and its Komlós-limit. Let us recall the Biting Lemma: for any L1([0, T ])-
bounded sequence (ϕn)n, there exist a subsequence (ϕkn)n and a sequence (Ap)p ⊂ Σ
decreasing to ∅ such that the sequence (χAc

n
ϕkn)n is uniformly integrable.

Proposition 18. In the setting of Theorem 17, for every ε > 0, there exists Tε ∈ Σ
with µ(Tε) < ε such that for every x∗ ∈ X∗ and every measurable A ⊂ [0, T ] \ Tε we

have

σ

(
x∗,

∫

A

F (t) dt

)
= lim

n
σ

(
x∗,

∫

A

Fkn(t) dt

)
,

where the set-valued integrals are Aumann integrals.

�������
	
. Since the sequence of measurable sets (Bm)m covers the set of finite

measure [0, T ] for every ε > 0, one can find mε ∈ � such that µ
( ∞⋃

m=mε+1
Bm

)
< 1

2ε.

By hypothesis ii′) in the preceding theorem, sup
n∈ �

∫
mε⋃

m=1
Bm

|Fn(t)| dt < +∞, whence
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the Biting Lemma yields a measurable set T̃ε ⊂
mε⋃

m=1
Bm such that µ

( mε⋃
m=1

Bm \

T̃ε

)
< 1

2ε and the sequence (|Fn(·)|)n is uniformly integrable on T̃ε. Thus, Tε =
( mε⋃

m=1
Bm \ T̃ε

)⋃( ∞⋃
m=mε+1

Bm

)
has µ(Tε) < ε and, for every x∗ ∈ X∗, (σ(x∗, Fn(·))n

is uniformly integrable on [0, T ]\Tε. Vitali’s convergence theorem yields then that for
every x∗ ∈ X∗ and A ⊂ [0, T ]\Tε we have σ(x∗,

∫
A

F (t) dt) = lim
n

σ(x∗,
∫

A
Fkn(t) dt).

Finally, let us remark that any such measurable A is contained in
mε⋃

m=1
Bm and

since on each Bm all Fn and F are integrably bounded, their selections are Bochner

integrable on A, thus the set-valued integrals in the statement are Aumann integrals.
�

Remark 19. We can also prove Theorem 17 using a Komlós result for integrably
bounded multifunctions (Theorem 2.5 in [2]) in a manner similar to that in which

Theorem 3.1 in [16] was obtained.

4. Application to a best approximation problem

We are looking for a solution to the following best approximation problem: given

two Pwkc(X)-valued HKP-integrable multifunctions H and F defined on [0, T ], we
want to get a Pwkc(X)-valued HKP-integrable multifunction F0 with F0(t) ⊂ F (t),
∀ t ∈ [0, T ] such that

∫ T

0

D(H(t), F0(t)) dt(1)

= inf
{∫ T

0

D(H(t), G(t)) dt ; G HKP-integrable, G(t)⊂F (t), ∀ t ∈ [0, T ]
}

.

Solutions to this problem were already found in [5] in the integrably bounded

setting and in [16] in the Pettis integrable one.
If the Banach space and its topological dual have the Radon-Nikodym property,

then the above problem has a solution. We use the following lower semi-continuity
property of the Hausdorff distance (Lemma 5.1 in [16]):

Lemma 20. Let (Cn)n ⊂ Pwkc(X) converge to C0 ∈ Pwkc(X) with respect to
the topology of convergence of all support functionals. Then, for every C ∈ Pwkc(X),

D(C, C0) 6 lim inf
n

D(C, Cn).
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Theorem 21. Suppose that X andX∗ have the Radon-Nikodym property and let

H and F be two Pwkc(X)-valued HKP-integrable multifunctions defined on [0, T ].
Then there is a Pwkc(X)-valued HKP-integrable multifunction F0 with F0(t) ⊂
F (t), ∀t ∈ [0, T ] such that the equality (1) is satisfied.

�������
	
. By Theorem 11 there exist HKP-integrable functions f , h andPwkc(X)-

valued Pettis integrable multifunctions F1, H1 such that F (t) = f(t) + F1(t) and
H(t) = h(t) + H1(t) for every t ∈ [0, T ]. We can suppose that m < ∞, where
m denotes the infimum in the equality (1), and consider a sequence (Gn)n of HKP-

integrable Pwkc(X)-valued multifunctions contained in F such that

m = lim
n→∞

∫ T

0

D(H(t), Gn(t)) dt.

Let us note that everyPwkc(X)-valued HKP-integrable multifunction Gn contained

in F can be written as the sum of f and a Pwkc(X)-valued Pettis integrable mul-
tifunction G1

n contained in F1. Indeed, since Gn(t) ⊂ F (t) = f(t) + F1(t) for ev-
ery t ∈ [0, T ], we obtain that G1

n(t) = −f(t) + Gn(t) ⊂ F1(t). Moreover, G1
n is

Pwkc(X)-valued and thus, since F1 is Pettis integrable, by the characterization of

Pettis integrablePwkc(X)-valued multifunctions (see [9]), Pettis integrability of G1
n

follows.

We claim that (G1
n)n satisfies the hypothesis of Theorem 3.3 in [16].

Indeed, since

−σ(−x∗, F1(t)) 6 σ(x∗, G1
n(t)) 6 σ(x∗, F1(t))

for every n ∈ � and every t ∈ [0, T ] and, since −σ(−x∗, F1(·)) and σ(x∗, F1(·))
are Lebesgue integrable, it follows that the sequence (σ(x∗, G1

n(t)))n is uniformly
integrable.

Considering Bm = {t ∈ [0, T ]; m − 1 < |F1(t)| 6 m}, we obtain a count-
able measurable partition of the interval [0, T ] satisfying that sup

n∈ �
∫

Bm
|G1

n(t)| dt 6
∫

Bm
|F1(t)| dt < +∞ for each m ∈ � , and, co

( ⋃
n∈ �

∫
A

G1
n(t) dt

)
⊂

∫
A

F1(t) dt ∈
Pwkc(X) for all A ⊂ Bm.

Then, applying Theorem 3.3 in [16] gives us a Pettis integrable Pwkc(X)-valued
function F 1

0 and a subsequence (G1
kn

)n that Komlós-converges to F 1
0 .

Therefore, (Gkn)n Komlós-converges to F0 = f +F 1
0 which is HKP-integrable and,

thanks to the weak compactness and convexity of the values of F , F0 is a.e. contained
in F .
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Then, using Lemma 20 and Fatou’s Lemma, we obtain

m 6
∫ T

0

D(H(t), F0(t)) dt 6
∫ T

0

lim inf
n

D

(
H(t),

1
n

n∑

i=1

Gki(t)
)

dt

6 lim inf
n

∫ T

0

D

(
H(t),

1
n

n∑

i=1

Gki(t)
)

dt

6 lim inf
n

1
n

n∑

i=1

∫ T

0

D(H(t), Gki(t)) dt

= lim
n→∞

∫ T

0

D(H(t), Gn(t)) dt = m,

therefore m =
∫ T

0 D(H(t), F0(t)) dt and thus F0 is a solution to our minimisation
problem. �

The best approximation problem (1) has a solution in the case of a weakly sequen-
tially complete Banach space too:

Theorem 22. Let X be weakly sequentially complete and let H , F be two

Pwkc(X)-valued HKP-integrable multifunctions defined on [0, T ]. There exists a
Pwkc(X)-valued HKP-integrable multifunction F0 with F0(t) ⊂ F (t), ∀ t ∈ [0, T ]
such that the equality (1) is satisfied.

�������
	
. As in the proof of the preceding theorem, we can suppose that

m < ∞ and consider a sequence (Fn)n of HKP-integrable Pwkc(X)-valued multi-
functions contained in F such that m = lim

n→∞

∫ T

0
D(H(t), Fn(t)) dt. We claim that

(Fn)n verifies the hypothesis of Corollary 16. Indeed, for every x∗ ∈ X∗ there
exists −σ(−x∗, F ) that is a real HK-integrable function such that −σ(−x∗, F (t)) 6
σ(x∗, Fn(t)), ∀ t ∈ [0, T ] for every n ∈ � .
Obviously, sup

n∈ �
(HK)

∫ T

0
σ(x∗, Fn(t)) dt 6 (HK)

∫ T

0
σ(x∗, F (t)) dt < +∞.

Then, applying Corollary 16 gives us an HKP-integrable Pwkc(X)-valued func-
tion F0 and a subsequence of (Fn)n which K-converges to F0.

Similarly to the second part of the proof of the preceding theorem, we obtain that

m =
∫ T

0 D(H(t), F0(t)) dt, so F0 is a solution to problem (1). �
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5. Application to weak compactness in the space of

HKP-integrable multifunctions

Let F be a Pwkc(X)-valued HKP-integrable multifunction.

Definition 23. G : [0, T ] → Pwkc(X) is said to be a multi-selection of F if
G(t) ⊂ F (t) a.e.

Obviously, every selection is a multi-selection. Consider the family of all HKP-
integrable multi-selections of F and denote it by S̃HKP

F . It is nonempty by Theo-

rem 11.
On the space of Pwkc(X)-valued HKP-integrable multifunctions, by the w̃-HKP

topology, we will understand the coarsest one with respect to which the HK-integrals
of the products of support functionals with real bounded variation functions are

convergent. That is Fα → F if for every g : [0, T ] → �
of bounded variation and

every x∗ ∈ X∗,

(HK)
∫ T

0

g(t)σ(x∗, Fα(t)) dt → (HK)
∫ T

0

g(t)σ(x∗, F (t)) dt.

This is an extension of the w-HKP topology to the set-valued case.
We give now a weak compactness result.

Proposition 24. Let X be a separable Banach space and let F be a Pwkc(X)-
valued HKP-integrable multifunction. Then S̃HKP

F is w̃-HKP sequentially compact.
�������
	

. Let (Fn)n be a sequence of HKP-integrable multi-selections of F .
Applying Theorem 11 one can find an HKP-integrable function f and a Pwkc(X)-
valued Pettis integrable multifunction G such that, for all t ∈ [0, T ], F (t) = f(t) +
G(t).
As in the proof of Theorem 21 we can prove that, for every n ∈ � , there exists a

Pettis integrable multi-selection of G, denoted by Gn, such that Fn(t) = f(t)+Gn(t),
∀ t ∈ [0, T ].
Proposition 2.6 in [4] yields that one can find a subsequence (Gkn)n and a

Pwkc(X)-valued Pettis integrable multifunction G∞ such that, for every g ∈
L∞([0, T ]) and any x∗ ∈ X∗,

lim
n→∞

∫ T

0

g(t)σ(x∗, Gkn(t)) dt =
∫ T

0

g(t)σ(x∗, G∞(t)) dt.

Moreover, on every measurable A,
∫

A

σ(x∗, G∞(t)) dt = lim
n→∞

∫

A

σ(x∗, Gkn(t)) dt 6
∫

A

σ(x∗, G(t)) dt,
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whence, for every x∗ ∈ X∗, we have σ(x∗, G∞(t)) 6 σ(x∗, G(t)) a.e. Therefore, by
passing through a Mackey-dense sequence and using the weak compactness of the
values of G∞ and G, we obtain that G∞ is a multi-selection of G.

It follows that (Fkn)n w̃-HKP-converges to F∞ = f + G∞, which is a multi-

selection of F , and so the w̃-HKP sequential compactness of the family of multi-
selections is proved. �

In particular, the family of all HKP-integrable selections is w-HKP sequentially
compact.

Using the Komlós theorems obtained in the first section we can get two weak com-
pactness criteria in the space of allPwkc(X)-valued HKP-integrable multifunctions.
We will use the following two lemmas:

Lemma 25. Let (fn)n be a uniformly HK-integrable, pointwise bounded sequence
of real functions defined on [0, T ] and let g : [0, T ] → �

be a function of bounded

variation. Then

i) the sequence f̃n(·) = (HK)
∫ ·
0
fn(t) dt is uniformly equicontinuous on [0, T ];

ii) f̃n is Riemann-Stieltjes integrable with respect to g uniformly in n ∈ � ;
iii) the sequence (gfn)n is uniformly HK-integrable.

�������
	
. i) Let us define f̃ : [0, T ] → l∞ by f̃(t) = (f̃n(t))n, ∀ t ∈ [0, T ]. Let us

first verify that f̃ is l∞-valued. Take c ∈ [0, T ]. By the uniform HK-integrability

hypothesis, there exists a partition of [0, c] such that
∣∣∣

k∑
i=1

fn(ti)(ci+1−ci)−f̃n(c)
∣∣∣ < 1,

∀n. The pointwise boundedness assumption on (fn)n allows to chooseM < ∞ such
that |fn(ti)| 6 M , ∀ i ∈ {1, . . . , k}, ∀n ∈ � . Then |f̃n(c)| 6 1 + Mc, ∀n ∈ � and so
the assertion follows.

To prove the equicontinuity of the above defined sequence is equivalent to proving
that the function f̃ is continuous with respect to the sup-norm on l∞ (thus uniformly

continuous, since the definition domain is compact).

Fix c ∈ [0, T ] and ε > 0. By hypothesis, one can find Mc < +∞ such that

|fn(c)| 6 Mc for all n ∈ � , and a gauge δε satisfying
∣∣∣

k∑
i=1

fn(ti)(ci+1−ci)−(f̃n(ci+1)−

f̃n(ci))
∣∣∣ < ε for every n ∈ � and every δε-fine partition. Then every x ∈ [0, T ] with

|x − c| 6 ηε,c, where ηε,c = min(δε(c), ε/Mc), satisfies, by Saks-Henstock’s Lemma
(Lemma 9.11 in [14]), the inequality

|f̃n(x)− f̃n(c)| 6 |f̃n(x) − f̃n(c)− fn(c)(x− c)|+ |fn(c)(x − c)| 6 2ε, ∀n ∈ � ,

since the interval (x, c) with the tag c is an element of a δε-fine partition of [0, T ].
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Consequently, ‖f̃(x)− f̃(c)‖∞ 6 2ε for every x with |x−c| 6 ηε,c so the continuity

is proved.
ii) follows, by virtue of the equicontinuity of the sequence (f̃n)n, by the straightfor-

ward adaptation of the proof of the fact that every continuous function is Riemann-

Stieltjes integrable with respect to a function of bounded variation (e.g. Theo-
rem 12.15 in [14]).

Finally, the assertions i) and ii) allow us to follow the same reasoning as in the
proof of Lemma 4 in order to obtain iii). �

We have already noticed that the concept of uniform HK-integrability does not

allow to ignore the µ-null sets (see Example 6). We have, nonetheless, the following
property:

Lemma 26. Any pointwise bounded sequence of functions fk : [0, T ] → �
which

are null except on a set of null measure is uniformly HK-integrable.
�������
	

. Let N be the µ-null set from the hypothesis.

For every n ∈ � , put N ′
n = {t ∈ N : 0 < |fk(t)| 6 n, ∀k} and let (Nn)n be the

associated pairwise disjoint sequence. By the pointwise boundedness assumption,

the sequence (Nn)n covers the set N . For each n one can find an open set On such
that Nn ⊂ On and µ(On) < ε/n2n. Define a gauge δε : [0, T ] → �

by

δε(t) =

{
1 if t ∈ [0, T ] \N,

d(t, (On)c) if t ∈ Nn.

Then for every δε-fine partition P of [0, T ], denote by Pn the subset of P that has

tags in Nn. If I is an interval of Pn, then I ⊂ On. If we denote by f(P) the HK-
integral sum associated to f and to the partition P , then, for every k, |fk(P)| 6
∞∑

n=1
|fk(Pn)| 6

∞∑
n=1

nµ(On) < ε. Thus the sequence considered is uniformly HK-

integrable. �

Proposition 27. Let X be a weakly sequentially complete separable Banach

space and K a family of Pwkc(X)-valued HKP-integrable multifunctions on [0, T ]
satisfying

i′) for every x∗ ∈ X∗, the family {σ(x∗, F (·)) : F ∈ K } is uniformly HK-integrable
and K is pointwise bounded;

ii) there exist a function h : [0, T ]× Pwkc(X) → [0, +∞] such that, for every t ∈
[0, T ], h(t, ·) is convex and sequentially inf-compact, and a countable measurable
partition (Bm)m of [0, T ] such that, for every m ∈ � ,
iia) sup

{∫
Bm

|σ(x∗, F (t))| dt : F ∈ K
}

< +∞, ∀x∗ ∈ X∗;
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iib) sup
{∫ ∗

Bm
h(t, F (t)) dt : F ∈ K

}
< +∞.

Then K is relatively w̃-HKP sequentially compact.

�������
	
. Let (Fn)n be a sequence in K . The existence of a subsequence (Fkn)n

that Komlós converges to a measurable Pwkc(X)-valued function F follows in the
same way as in the first part of the proof of Theorem 14.

The scalar HK-integrability of the limit multifunction follows from Theorem 13.16

in [14] applied, for each x∗ ∈ X∗, to the sequence
(
σ
(
x∗,

1
n

n∑
i=1

Fki

))
n
. Indeed, it

is obvious that our condition i′) implies the uniform HK-integrability of the latter
sequence and the pointwise boundedness assumption allows us (thanks to Lemma 26)

to suppose that this sequence converges everywhere to σ(x∗, F ) (on the exceptional
null set, we redefine all multifunctions by 0).

Applying Lemma 25, we obtain that for any g of bounded variation,

(
gσ

(
x∗,

1
n

n∑

i=1

Fki

))

n

is uniformly HK-integrable whence, again by Theorem 13.16 in [14], we conclude
that

(HK)
∫ T

0

g(t)σ(x∗, F (t)) dt = lim
n

(HK)
∫ T

0

g(t)σ
(

x∗,
1
n

n∑

i=1

Fki(t)
)

dt.

This equality can be written as

(HK)
∫ T

0

g(t)σ(x∗, F (t)) dt = lim
n

1
n

n∑

i=1

(HK)
∫ T

0

g(t)σ(x∗, Fki (t)) dt

and, since this is true for every subsequence of (Fkn)n, it follows that (Fkn)n satisfies

that for every x∗ ∈ X∗ and every g : [0, T ] → �
of bounded variation one has

(HK)
∫ T

0

g(t)σ(x∗, F (t)) dt = lim
n

(HK)
∫ T

0

g(t)σ(x∗, Fkn(t)) dt.

In other words, the subsequence (Fkn)n w̃-HKP converges, whence the relative w̃-
HKP sequential compactness of K follows. �

In the same way, applying Theorem 17, we get
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Proposition 28. Let X be a separable reflexive Banach space. Let K be a

family of HKP-integrable Pwkc(X)-valued multifunctions satisfying the following
conditions:

i′) for every x∗ ∈ X∗, the family {σ(x∗, F ), F ∈ K } is uniformly HK-integrable
and K is pointwise bounded;

ii) there is a countable measurable partition (Bm)m of [0, T ] such that, for each
m ∈ � , sup

{∫
Bm

|F (t)| dt : F ∈ K
}

< +∞.
Then K is relatively w̃-HKP sequentially compact.

6. An integral inclusion involving the Henstock-Kurzweil-Pettis

set-valued integral

In the sequel, we consider the space X provided with its weak topology, denoting

it by Xw, and the vector space C([0, T ], Xw) of all Xw-valued continuous functions
on [0, T ] provided with the topology of uniform convergence.
The following theorem extends an existence result for solutions of a set-valued

integral equation (Theorem VI-7 in [6]) that imposed a Pettis integrability condition.

Theorem 29. Let an open subset U of Xw, an HKP-integrable set-valued func-
tion Γ: [0, T ] → Pwkc(X) and F : [0, T ]× U → Pwkc(X) satisfy
1) F (t, x) ⊂ Γ(t), ∀ t ∈ [0, T ], ∀x ∈ U ;

2) F (t, ·) is upper semi-continuous for every t ∈ [0, T ];
3) σ(x∗, F (·, x)) is measurable for every x∗ ∈ X∗ and every x ∈ U .

Then, for every fixed ξ ∈ U , there exists T0 ∈ ]0, T ] such that ξ+(HKP)
∫ T0

0 Γ(s) ds ⊂
U and the integral inclusion

x(t) ∈ ξ + (HKP)
∫ t

0

F (s, x(s)) ds

has a solution in C([0, T0], Xw). Moreover, the set of solutions is compact in
C([0, T0], Xw).
�������
	

. Theorem 11 yields that there exist an HKP-integrable function f and
a Pwkc(X)-valued Pettis integrable multifunction G satisfying that, for every t ∈
[0, T ], we have Γ(t) = f(t) + G(t). By Theorem 3, f is scalarly measurable and, as
the Banach space is separable, f is measurable.

Fix ξ ∈ U and consider a weakly open subset U1 of X and a weak neighborhood U2

of the origin such that ξ ∈ U1 and U1 + U2 ⊂ U . Since (HKP)
∫ ·
0 f(t) dt is weakly

continuous, there exists T1 ∈ ]0, T ] such that (HKP)
∫ t

0
f(t) dt ∈ U2 for every t ∈
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[0, T1]. Then the set-valued function F̃ : [0, T1] × U1 → X defined by F̃ (t, x) =
−f(t) + F

(
t, x + (HKP)

∫ t

0 f(τ) dτ
)
satisfies the following conditions:

1) F̃ (t, x) ⊂ G(t), ∀ t ∈ [0, T1], ∀x ∈ U1;
2) F̃ (t, ·) is upper semi-continuous for every t ∈ [0, T1];
3) σ(x∗, F̃ (·, x)) is measurable for every x∗ ∈ X∗ and every x ∈ U1.
Applying then Theorem VI-7 in [6] we obtain that there exists T0 ∈ ]0, T1] such

that ξ + (P)
∫ T0

0 G(s) ds ⊂ U1, the integral inclusion

x̃(t) ∈ ξ + (P)
∫ t

0

F̃ (s, x̃(s)) ds

has a solution in C([0, T0], Xw) and the set of solutions is compact in C([0, T0], Xw).
Therefore, ξ + (HKP)

∫ T0

0 Γ(s) ds = ξ + (HKP)
∫ T0

0 f(s) ds + (P)
∫ T0

0 G(s) ds ⊂ U

and we can find x̃ ∈ C([0, T0], Xw) such that

x̃(t) ∈ ξ + (P)
∫ t

0

−f(s) + F

(
s, x̃(s) + (HKP)

∫ s

0

f(τ) dτ

)
ds,

in other words

x̃(t) + (HKP)
∫ t

0

f(s) ds ∈ ξ + (HKP)
∫ t

0

F

(
s, x̃(s) + (HKP)

∫ s

0

f(τ) dτ

)
ds.

Thus x(·) = x̃(·)+(HKP)
∫ ·
0
f(τ) dτ is a continuous function mapping [0, T0] into Xw

and it is a solution of our integral inclusion. �
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