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Abstract. A subgroup H of a group G is said to be complemented in G if there exists
a subgroup K of G such that G = HK and H ∩ K = 1. In this paper we determine the
structure of finite groups with some complemented primary subgroups, and obtain some
new results about p-nilpotent groups.
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1. Introduction

A subgroup H of a group G is said to be supplemented in G if there exists a
subgroup K of G such that G = HK. Furthermore, a subgroup H of G is said to
be complemented in G if there exists a subgroup K of G such that G = HK and
H ∩ K = 1. It is obvious that the existence of supplements for some families of
subgroups of a group gives a lot of information about its structure. For instance,
Kegel [8], [9] showed that a group G is soluble if every maximal subgroup of G either
has a cyclic supplement in G or if some nilpotent subgroup of G has a nilpotent
supplement in G. Hall [6] proved that a group G is soluble if and only if every Sylow
subgroup of G is complemented in G. Arad and Ward [1] proved that a group G

is soluble if and only if every Sylow 2-subgroup and every Sylow 3-subgroup of G

are complemented in G. More recently, A. Ballester-Bolinches and Guo Xiuyun [2]
proved that the class of all finite supersoluble groups with elementary abelian Sylow
subgroups is just the class of all finite groups for which every minimal subgroup is
complemented.

This work is supported by NNSF of China (Grant No. 10471118).
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The aim of this paper is to take these studies further. In fact, we analyze the finite
group for which some primary subgroups are complemented. We obtain a series of
new results for the p-nilpotency of finite groups.
All groups considered in this paper will be finite. Our notation is standard and

can be found in [4] and [10]. We denote the fact that G is the semi-product of
subgroups H and K by G = [H ]K, where H is normal in G.
A subgroup H is called the second maximal subgroup of G, if H is the maximal

subgroup of some maximal subgroup of G. A subgroupH is called the third maximal
subgroup of G, if H is the maximal subgroup of some second maximal subgroup of G.
Let π be a set of primes. We say that G ∈ Eπ if G has a Hall π-subgroup. We

say that G ∈ Cπ if any two Hall π-subgroups of G are conjugate in G. We say that
G ∈ Dπ if G ∈ Cπ and every π-subgroup of G is contained in a Hall π-subgroup
of G.
Let F be a class of groups. F is called Q-closed if G/N is in F for any normal

subgroup N of G when G ∈ F . F is called S-closed if any subgroup K of G is
in F when G ∈ F . We call F a formation provided that (1) if G ∈ F and H E G,
then G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩ N is in F for
normal subgroups M and N of G. Each group has a smallest normal subgroup N

such that G/N ∈ F . This uniquely determined normal subgroup of G is called
the F -residual subgroup of G and denoted by GF . A formation F is said to be
saturated if G/Φ(G) ∈ F implies that G ∈ F . (cf. [4, Chapt. 2 and 3]). As we all
know, the class of all p-nilpotent groups is a saturated formation.

2. Preliminaries

For the sake of easy reference, we first give some basic definitions and known
results from the literature.

Lemma 2.1 ([2, Lemma 1]). Let G be a group and N a normal subgroup of G.

Then the following statements hold.
(1) If H 6 K 6 G and H is complemented in G, then H is complemented in K.

(2) If N is contained in H and H is complemented in G, then H/N is complemented

in G/N .
(3) Let π be a set of primes. If N is a π′-subgroup and A is a π-subgroup of G,

then A is complemented in G if and only if AN/N is complemented in G/N .

Lemma 2.2 (cf. [4, Theorem 1.8.17]). Let N be a normal subgroup of a group G

(N 6= 1). If N ∩ Φ(G) = 1, then the Fitting subgroup F (N) of N is the direct

product of minimal normal subgroups of G which are contained in F (N).
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Lemma 2.3 ([3, Main Theorem]). Suppose that a finite group G has a Hall

π-subgroup where π is a set of primes not containing 2. Then all Hall π-subgroups
of G are conjugate.

Lemma 2.4. Let G be a finite group and p be a prime divisor of |G| such that
(|G|, p2 − 1) = 1. Assume that the order of G is not divisible by p3. Then G is

p-nilpotent.

���������
. Assume that the claim is false and choose G to be a counterexample

of minimal order. Since every proper subgroup and every proper quotient group
also satisfy the hypothesis of the lemma, the minimal choice of G implies that G is a
minimal non-p-nilpotent group but every proper subgroup and every proper quotient
group of are p-nilpotent. Therefore G = [P ]Q with Q cyclic [10, 9.1.9]. Since
both Φ(P ) and Φ(G) are in Z(G) = 1, we see that P is an elemenary abelian
Sylow p-subgroup and Q a cyclic group of order q. Q ∼= G/P and NG(P )/CG(P ) is
isomorphic to a subgroup of Aut(P ). Hence q divides p(p+1)(p−1) [10, 3.2.7]. Since
p 6= q and (|G|, p2 − 1) = 1, G is p-nilpotent by the Burnside p-nilpotent Theorem,
a contradiction.

The final contradiction completes our proof. �

Lemma 2.5 ([7, IV, 5.4, P434]). Suppose that G is a group which is not p-nilpotent
but whose proper subgroups are all p-nilpotent. Then G is a group which is not

nilpotent but whose proper subgroups are all nilpotent.

Lemma 2.6 ([7, 5.2, P281]). Suppose that G is a group which is not nilpotent

but whose proper subgroups are all nilpotent. Then

1) G has a normal Sylow p-subgroup P for some prime p and G/P ∼= Q, where

Q is a non-normal cyclic q-subgroup for some prime q 6= p.

2) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).
3) If P is non-abelian and p 6= 2, then the exponent of P is p.

4) If P is non-abelian and p = 2, then the exponent of P is 4.
5) If P is abelian, then P is of exponent p.

Lemma 2.7 ([12, P67 ]). Let K be a subgroup of G. If |G : K| = p, where p is

the smallest prime divisor of |G|, then K E G.

Lemma 2.8. Let G be a finite group and p be the prime divisor of |G| such that
(|G|, p2 − 1) = 1. If G/L is p-nilpotent and p3 � |L|, then G is p-nilpotent.
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���������
. By hypothesis and Lemma 2.4, we know that L is p-nilpotent and

L has a normal p-complement Lp′ . Since Lp′ char L and L is normal in G, we
have Lp′ E G. Therefore G/L ∼= (G/Lp′)/(L/Lp′) is p-nilpotent. There exists a
Hall p′-subgroup (H/Lp′)/(L/Lp′) of (G/Lp′)/(L/Lp′) and H/Lp′ E G/Lp′ . By the
Schur-Zassenhaus Theorem, we have H/Lp′ = [L/Lp′ ]H1/Lp′ , where H1/Lp′ is a
Hall p′-subgroup of H/Lp′ . Then by Lemma 2.4 we have H1/Lp′ E H/Lp′ and
so H1/Lp′ char H/Lp′ E G/Lp′ . Therefore H1/Lp′ E G/Lp′ and hence G/Lp′ is
p-nilpotent. Thus G is p-nilpotent. �

Lemma 2.9 ([13]). Let P be an elementary abelian p-group of order pn, where

p is a prime. Then |Aut(P )| = kn · pn(n−1)/2, here kn =
n∏

i=1

(pi − 1).

Lemma 2.10 ([13]). Let G be a group of order pn, where p is a prime. Then
|Aut(G)| is the factor of the order of Aut(P ), where P is an elementary abelian

p-group of order pn.

Lemma 2.11 ([7]). Let G be a finite group and U any p-subgroup of G. If

NG(U)/CG(U) is a p-subgroup, then G is p-nilpotent.

Lemma 2.12 ([5, Lemma 5]). Let F be an S-closed local formation and H a

subgroup of G. Then H ∩ ZF (G) ⊆ ZF (H).

3. Main results

Theorem 3.1. Let G be a finite group and p a prime divisor of |G| such that
(|G|, p2 − 1) = 1. If there exists a normal subgroup N in G such that G/N is

p-nilpotent and each subgroup of N of order p2 is complemented in G, then G is
p-nilpotent.
���������

. Assume that the claim is false and choose G to be a counterexample of
minimal order.
By Lemma 2.8 and the hypothesis, we have |N |p > p2. Let L be a proper subgroup

ofG. We prove that conditions of the Theorem are inherited by L. Clearly, L/L∩N ∼=
LN/N 6 G/N implies that L/L ∩ N is p-nilpotent. If |L ∩ N |p 6 p2, then L is
p-nilpotent by Lemma 2.8. If |L ∩ N |p > p2, then each subgroup of L ∩ N of
order p2 is complemented in G by Lemma 2.1 and hence is complemented in L,
thus L is p-nilpotent by induction. Thus G is a minimal non-p-nilpotent group.
Now Lemma 2.5 implies that G is a group which is not nilpotent but whose proper
subgroups are all nilpotent. Then by Lemma 2.6, we have G = PQ, where P is
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normal in G and Q is a non-normal cyclic Sylow q-subgroup of G. It is clear that
P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).
Clearly, P 6 N . Let A 6 N and |A| = p2. By hypothesis, there exists a sub-

group K of G such that G = AK and K ∩ A = 1. By hypothesis, K is nilpo-
tent and K = Kp × Kp′ . If Kp = 1, then P = A and hence G is p-nilpotent
by Lemma 2.4, a contradiction. If Kp 6= 1, then Kp is the second maximal sub-
group of P . Then we consider the subgroup NG(Kp). Since K 6 NG(Kp), we
have |G : NG(Kp)| = p or NG(Kp) = G. If |G : NG(Kp)| = p, then we have
NG(Kp) < G. Let P1 = P ∩ NG(Kp). Then P1 E G. If P1 6 Φ(P ), then
P = P ∩ ANG(Kp) = A(P ∩ NG(Kp)) = A, a contradiction. If P1 	 Φ(P ),
then P1Φ(P )/Φ(P ) = P/Φ(P ) by Lemma 2.6. In this case, P = P1 and hence
NG(Kp) = G, a contradiction. If |G : NG(Kp)| = 1, then Kp E G. Since G/Kp is
p-nilpotent by Lemma 2.4, we have P = Kp, a contradiction.

The final contradiction completes our proof. �

Corollary 3.2. Let G be a finite group and p a prime divisor of |G| such that
(|G|, p2 − 1) = 1. If each subgroup of G of order p2 is complemented in G, then G is
p-nilpotent.

Theorem 3.3. Suppose that G is a group with a normal subgroup H such that
G/H is p-nilpotent for some prime divisor p of |G|. If every cyclic subgroup of
order 4 of H is complemented in G and every subgroup of H of order p is contained

in ZF (G), where F is the class of all p-nilpotent groups, then G is p-nilpotent.

���������
. Assume that the claim is false and choose G to be a counterexample of

the smallest order.

The hypothesis is inherited by all proper subgroups of G. Let K be a proper sub-
group of G. Then K/K ∩H ∼= KH/H 6 G/H implies that K/K ∩H is p-nilpotent.
Every cyclic subgroup of K ∩H of order 4 is complemented in G and hence is com-
plemented in K by Lemma 2.1. Every subgroup of H ∩ K of order p is contained
in K ∩ ZF (G) 6 ZF (K) by Lemma 2.12. Thus G is a minimal non-p-nilpotent
group. Now Lemma 2.5 implies that G is a group which is not nilpotent but whose
proper subgroups are all nilpotent. Thus by Lemma 2.6, G has a normal Sylow
p-subgroup P and G/P ∼= Q, where Q is a non-normal cyclic Sylow q-subgroup of G,
and P/Φ(P ) is a minimal normal subgroup of G/Φ(P ). We consider the following
cases.

Case 1 : P is abelian. By Lemma 2.6, P is an elementary abelian p-group. Since
G/H is p-nilpotent, we have P 6 H . By hypothesis, every subgroup of H of order p

is contained in ZF (G), thus P 6 ZF (G) and hence G is p-nilpotent, a contradiction.
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Case 2 : P is non-abelian and p > 2. By Lemma 2.6, the exponent of P is p and
every subgroup of H of order p is contained in ZF (G). Therefore P 6 ZF (G) and
we see that G is p-nilpotent, a contradiction.
Case 3 : P is non-abelian and p = 2. Let A be a cyclic subgroup of H of order 4.

By hypothesis, A is complemented in G and there exists a subgroup L of G such
that G = AL and L∩A = 1. Since L is nilpotent, we have L = Lp ×Lp′ . If Lp = 1,
then P = A, a contradiction. Clearly, Lp is the 2-maximal subgroup of P . We
consider NG(Lp). Since L 6 NG(Lp), we have |G : NG(Lp)| = 2 or |G : NG(Lp)| = 1.
If |G : NG(Lp)| = 2, then NG(Lp) E G by Lemma 2.7 and hence G is 2-nilpotent,
a contradiction. If |G : NG(Lp)| = 1, then Lp E G. Since P/Φ(P ) is the minimal
normal subgroup of G/Φ(P ), we have P = Lp or Lp 6 Φ(P ). It is clear that P = Lp

is impossible. If Lp 6 Φ(P ), then P = ALp = A, a contradiction.
The final contradiction completes our proof. �

Corollary 3.4. Let G be a group and p be the prime divisor of |G|. If every
cyclic subgroup of order 4 is complemented in G and every subgroup of G of order p

is contained in ZF (G), where F is the class of all p-nilpotent groups, then G is
p-nilpotent.

Theorem 3.5. Let G be a group and (|G|, 21) = 1. If each subgroup of G of

order 8 (if it exists) is complemented in G, then G is 2-nilpotent.
���������

. Assume that the theorem is false and choose G to be a counterexample
of the smallest order. Let 2α be the order of a Sylow 2-subgroup P of G.
If 2 � |G|, then G is 2-nilpotent. If P is cyclic, then G is 2-nilpotent by [10, 10.1.9].

So we can suppose that P is not cyclic. Let L be a proper subgroup of G. We prove
that L inherits the condition of the theorem. If 8 � |L|, then L is 2-nilpotent by
Lemma 2.4. If 8 | |L|, then each subgroup of L of order 8 is complemented in G

and hence is complemented in L by Lemma 2.1, so L is 2-nilpotent by induction.
Thus we may assume that G is a minimal non-2-nilpotent group. Now Lemma 2.5
implies that G is a group which is not nilpotent but whose proper subgroups are all
nilpotent. Thus by Lemma 2.6, we have G = PQ, where P is normal in G and Q is a
non-normal cyclic Sylow q-subgroup of G (q 6= p), and P/Φ(P ) is a minimal normal
subgroup of G/Φ(P ).
Let H be a subgroup of G of order 8. By hypothesis, there exists a subgroup K

of G such that G = HK and K ∩ H = 1.
First, we claim that H 6= P . Otherwise P = H E G. If Φ(P ) 6= 1, then G/Φ(P )

is 2-nilpotent by Lemma 2.4 and hence G is 2-nilpotent, a contradiction. It follows
from Φ(P ) = 1 and Lemma 2.6 that P is an elementary abelian 2-group. Next
we will consider NG(P )/CG(P ). It is clear that NG(P )/CG(P ) is isomorphic to a
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subgroup of Aut(P ). By Lemma 2.9 we have |Aut(G)| = 168. Since (|G|, 21) = 1,
we see that NG(P ) = CG(P ). Then, by the Burnside Theorem (cf. [10]), we see that
G is 2-nilpotent, a contradiction.
Since H ∩K = 1 and K is nilpotent, K2 is the third maximal subgroup of P . We

claim that K2 
 G. Otherwise if K2 E G, then P = K2 or K2 6 Φ(P ). It is clear
that P = K2 is impossible. If K2 6 Φ(P ), then P = HK2 = H , a contradiction.
Consider the subgroup NG(K2). If |G : NG(K2)| = 2, then NG(K2) is a nilpotent
normal subgroup of G by Lemma 2.7 and so G is 2-nilpotent, a contradiction. If |G :
NG(K2)| = 4, then we consider NG((NG(K2))2). It is clear that (NG(K2))2 is the
second maximal subgroup of P . If (NG(K2))2 E G, then G/(NG(K2))2 is 2-nilpotent
by Lemma 2.4 and we have P 6 (NG(K2))2, a contradiction. Thereby we may assume
that |G : NG((NG(K2))2)| = 2. By Lemma 2.7 we know that NG((NG(K2))2) E G.
Since NG((NG(K2))2) is a nilpotent normal subgroup of G, we know that G is 2-
nilpotent, a contradiction.
The final contradiction completes the proof. �

Lemma 3.6. Let G be a finite group with (|G|, 21) = 1. Assume that every third
maximal subgroup (if it exists) of a Sylow 2-subgroup of G is complemented in G.
Then G/O2(G) is 2-nilpotent.
���������

. Assume that the claim is false and choose G to be a counterexample of
minimal order. Let P be a Sylow 2-subgroup of G. Furthermore, we have:
(1) O2(G) = 1.
If O2(G) = P , then G/O2(G) is a 2′-group and of course it is 2-nilpotent, a con-

tradiction. If O2(G) = P1, where P1 is the maximal subgroup of P , then G/O2(G) is
2-nilpotent since |G/O2(G)|2 = 2, a contradiction. If O2(G) = P2 where P2 is the sec-
ond maximal subgroup of P , then 23 � |G/O2(G)|. Hence G/O2(G) is 2-nilpotent by
Lemma 2.4, a contradiction. If 1 < O2(G) < P2, then G/O2(G) satisfies the hypoth-
esis and the minimal choice of G implies that G/O2(G) ∼= G/O2(G)/O2(G/O2(G))
is 2-nilpotent, a contradiction.
(2) |G| is divisible by 24.

If 23 � |G| and (|G|, 21) = 1, then G is 2-nilpotent by Lemma 2.4, a contradiction.
If 23 | |G| and 24 � |G|, then |G2| = 23. Next we consider NG(U)/CG(U), where U is
any 2-subgroup of G. If U = P , then NG(P )/CG(P ) is isomorphic to a subgroup
of Aut(P ). By Lemma 2.9 and Lemma 2.10, NG(P )/CG(P ) is a 2-subgroup. If
U 6= P , it is easy to see that NG(U)/CG(U) is also a 2-group according to Lemma 2.9
and Lemma 2.10. Then by Lemma 2.11 it is clear that G is 2-nilpotent in this case,
a contradiction.
(3) For every third maximal subgroup P3 of a Sylow 2-subgroup P of G, the com-

plement of P3 in G is 2-nilpotent.
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By the hypothesis, P3 is complemented in G. There exists a subgroup K3 of G

such that G = P3K3 and K3 ∩ P3 = 1. By (2), we know that K3 is 2-nilpotent.
(4) G is 2-nilpotent.
Let N = NG((K3)2′) and K3 = (K3)2(K3)2′ . By (3), K3 6 N . So we have

G = P3K3 = P3N . If N = G, then G is 2-nilpotent, a contradiction. Let P3 6
P2 6 P1 6 P where P2 is the second maximal subgroup of P and P1 is the maximal
subgroup of P . Hence G = P3K3 = P2K3 = P2N . If P2 6 N , then G is 2-nilpotent,
a contradiction. So we may assume P2 ∩ N < P2. We may choose a maximal
subgroup P3

∗ of P2 such that P2 ∩ N 6 P3
∗. It is clear that P3

∗ is the third
maximal subgroup of P . By (3), P ∗

3 is complemented in G and the complement K∗
3

of P ∗
3 is 2-nilpotent. We denote K3

∗ = (K3
∗)2(K3

∗)2′ . Lemma 2.3 implies that
G ∈ C2′ . Now both (K3)2′ and (K3

∗)2′ are the Hall 2′-subgroups of G, these two
subgroups are conjugate in G. Let (K3)2′ = ((K3

∗)2′)g . Since G = P3
∗K3

∗ and
K3

∗ 6 NG((K3
∗)2′), we may choose g ∈ P3

∗. We also note that (K3
∗)g normalizes

((K3
∗)2′)g = (K3)2′ and hence (K3

∗)g 6 N . Now G = Gg = (P3
∗K3

∗)g = P3
∗N .

Therefore P2 = P2 ∩ P3
∗N = P3

∗(P2 ∩N) = P3
∗, contrary to the choice of G.

The final contradiction completes our proof. �

Theorem 3.7. Let G be a finite group with (|G|, 21) = 1. Assume that there
exists a normal subgroup N of G such that G/N is 2-nilpotent and every third
maximal subgroup of a Sylow subgroup of N is complemented in G. Then G is
2-nilpotent.
���������

. Assume that the claim is false and choose G to be a counterexample of
minimal order. Then
(1) G is soluble, G has a minimal normal subgroup L 6 N and L is an elementary

abelian r-group for some prime r.
By hypothesis, every third maximal subgroup of every Sylow subgroup of N is

complemented in G, thus is complemented in N by Lemma 2.1. By the choice of G
and Lemma 3.6, N is soluble and hence G is soluble. Let L be a minimal normal
subgroup of G which is contained in N . Then L is an elementary abelian r-group
for some prime r.
(2) G/L is 2-nilpotent and L is the unique minimal normal subgroup of G which

is contained in N . Furthermore, L = F (N) = CN (L).
In fact, (G/L)/(N/L) ∼= G/N is 2-nilpotent and (|G/L|, 21) = 1. Let R1/L be

a third maximal subgroup of the Sylow r-subgroup of N/L. Then R1 is a third
maximal subgroup of the Sylow r-subgroup R of N . By hypothesis of the theorem R1

is complemented in G. By Lemma 2.1, R1/L is complemented in G/L. Set Q1/L be
a third maximal subgroup of the Sylow q-subgroup of N/L, where q 6= r. It is clear
that Q1 = Q∗

1L, where Q∗
1 is a third maximal subgroup of the Sylow q-subgroup
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of N . By the hypothesis Q∗
1 is complemented in G. Hence Q∗

1L/L is complemented
in G/L by Lemma 2.1. We have proved that G/L satisfies the hypothesis of the
theorem. Hence G/L is 2-nilpotent by the minimal choice of G. Since the class of
all 2-nilpotent groups is a saturated formation, we can easily prove that L is the
unique minimal normal subgroup of G which is contained in N , L 	 Φ(G). By
Lemma 2.2, F (N) = L. The solubility of N implies that L 6 CN (F (N)) 6 F (N)
and so CN (L) = F (N) = L.

(3) L is a Sylow 2-subgroup of N .

By (1), we know that G is soluble. If 2 � |N |, then G is 2-nilpotent since G/N is
2-nilpotent, a contradiction. If 2 6= r, then G is 2-nilpotent by (2), a contradiction.
Therefore L is an elementary abelian 2-subgroup of G which is contained in N . Let
D be a Hall 2′-subgroup of N ; then it is clear that LD/L is a Hall 2′-subgroup
of N/L. We have LD/L E N/L since N/L is 2-nilpotent. So LD E N . Let P be a
Sylow 2-subgroup of N . Then L < P and PD = PLD is a subgroup of N . Note that
every third maximal subgroup of a Sylow subgroup of PD is complemented in G and
hence is complemented in PD by Lemma 2.1. Therefore PD satisfies the hypothesis
for G. If PD < G, the minimal choice of G implies that PD is 2-nilpotent, in
particular, D E PD. Hence LD = L×D and D 6 CN (L) = L, a contradiction.

Now we assume that G = PD = N and L < P . Since N/L is 2-nilpotent,
LD E N = G. By the Frattini argument, G = LNG(D). Note that L ∩ NG(D) =
1 since L is the unique minimal normal subgroup of G which is contained in N

and D is not normal in G in this case. Therefore G = [L]NG(D). Let P2 be a
Sylow 2-subgroup of NG(D). Then LP2 is a Sylow 2-subgroup of G. Choose a
third maximal subgroup P3 of LP2 such that P2 6 P3. Otherwise, if P2 is the
maximal subgroup of LP2, then |L| = 2 and hence G is 2-nilpotent by Lemma 2.8,
a contradiction. If P2 is the second maximal subgroup of LP2, then |L| = 22 and
hence G is 2-nilpotent by Lemma 2.8 and (2), a contradiction. Clearly, L 	 P3

and hence (P3)G = 1. By our hypothesis, P3 is complemented in G. There exists
a subgroup K of G such that G = P3K and K ∩ P3 6 (P3)G = 1. It follows that
K has a normal 2-complement which is in fact a Hall 2′-subgroup D1 of G in this
case. By the hypothesis and Lemma 2.3, there exists an element g ∈ L such that
Dg

1 = D. Since P2 6 P3 < P ∗
2 < P1 < LP2, where P1 is a maximal subgroup

of LP2 which contains P ∗
2 , and P ∗

2 is a second maximal subgroup of LP2 which
contains P3, we have G = P3K = P1K = (P1K)g = P1K

g. Since Kg ∼= K has a
normal 2-complement D and D = Dg

1 6 Kg , it follows that Kg 6 NG(D). Since
LP2 = LP2 ∩ G = LP2 ∩ P1K

g = P1(LP2 ∩ Kg), we have that LP2 ∩ Kg 	 P2.
Otherwise LP2 6 P1P2 = P1, a contradiction. Therefore P2 is a proper subgroup
of P4 = 〈P2, LP2 ∩ Kg〉 where P4 is a subgroup of the Sylow 2-subgroup LP2. Now
both P2 andKg are contained inNG(D) and we see that P4 is a 2-subgroup ofNG(D)
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which contains a Sylow subgroup P2 as a proper subgroup, a contradiction. Hence
L is a Sylow 2-subgroup of N .
(4) G is 2-nilpotent.
If |L| 6 4, then G is 2-nilpotent by Lemma 2.8 and (2), a contradiction. If

|L| = 23, then G is 2-nilpotent by Lemma 3.6. So we may assume |L| > 8. Let
L1 be a nontrivial third maximal subgroup of L. Then L1 is complemented in G.
There exists a subgroup K of G such that L1K = G and K ∩ L1 = 1. Therefore
L = L1(L ∩ K) and L ∩ K E G. We have L ∩ K = L, otherwise, L ∩ K = 1 and
L = L1, a contradiction. Therefore K = G, a contradiction.
The final contradiction completes our proof. �

Corollary 3.8. Let G a finite group with (|G|, 21) = 1. If every third maximal
subgroup of every Sylow subgroup of G is complemented in G, then G is 2-nilpotent.
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