Previous |  Up |  Next

Article

Keywords:
factorization; embedding; opertator ideal
Summary:
Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of $E$, thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.
References:
[1] S. F.  Bellenot: Factorable bounded operators and Schwartz spaces. Proc. Amer. Math. Soc. 42 (1974), 551–554. DOI 10.1090/S0002-9939-1974-0328557-4 | MR 0328557
[2] S. F.  Bellenot: The Schwartz-Hilbert variety. Mich. Math. Jour. 22 (1975), 373–377. MR 0394086 | Zbl 0308.46002
[3] J.  Diestel, J.  Jarchow, and A.  Tonge: Absolutely Summing Operators. Cambridge University Press, London, 1995. MR 1342297
[4] H.  Jarchow: Die Universalität des Raumes  $C_0$ für die Klasse der Schwartz-Räume. Math. Ann. 203 (1973), 211–214. DOI 10.1007/BF01629255 | MR 0320700
[5] W. B. Johnson, H.  König, B.  Maurey, and J. R.  Retherford: Eigenvalues of $p$-summing and $l_p$-type operators in Banach spaces. Jour. Func. Anal. 32 (1979), 353–380. DOI 10.1016/0022-1236(79)90046-6 | MR 0538861
[6] H.  Junek: Locally Convex Spaces and Operator Ideals. Teubner, Stuttgart-Leipzig, 1983. MR 0758254
[7] A.  Pietsch: Operator Ideals. North Holland, Amsterdam, 1980. MR 0582655 | Zbl 0455.47032
[8] D.  Randtke: A simple example of a universal Schwartz space. Proc. Amer. Math. Soc. 37 (1973), 185–188. DOI 10.1090/S0002-9939-1973-0312192-7 | MR 0312192
[9] D.  Randtke: On the embedding of Schwartz spaces into product spaces. Proc. Amer. Math. Soc. 55 (1976), 87–92. DOI 10.1090/S0002-9939-1976-0410316-7 | MR 0410316
[10] S. A.  Saxon: Embedding nuclear spaces in products of an arbitrary Banach space. Proc. Amer. Math. Soc. 34 (1972), 138–140. DOI 10.1090/S0002-9939-1972-0318823-9 | MR 0318823 | Zbl 0257.46006
[11] H. H.  Schaefer: Topological Vector Spaces. Springer Verlag, , 1980. MR 0342978 | Zbl 0435.46003
[12] M. A.  Sofi: Some remarks on $\lambda (P)$-nuclearity. Arch. der Math. 47 (1986), 353–358. DOI 10.1007/BF01191362 | MR 0866524 | Zbl 0577.46004
[13] M. A.  Sofi: Factoring $\lambda (P)$-nuclear operators over nuclear Frechet spaces. Jour. Math. Sciences, Part  I, 28 (1994), 267–281.
[14] T.  Terzioglu: A characterization of compact linear mappings. Arch. der Math. 22 (1971), 76-78. DOI 10.1007/BF01222542 | MR 0291865 | Zbl 0215.20902
[15] M.  Valdivia: Nuclearity and Banach spaces. Proc. Edinburgh Math. Soc. Ser.  2 20 (1977), 205–209. MR 0435778 | Zbl 0354.46002
Partner of
EuDML logo